全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

IGHV1-69 B Cell Chronic Lymphocytic Leukemia Antibodies Cross-React with HIV-1 and Hepatitis C Virus Antigens as Well as Intestinal Commensal Bacteria

DOI: 10.1371/journal.pone.0090725

Full-Text   Cite this paper   Add to My Lib

Abstract:

B-cell chronic lymphocytic leukemia (B-CLL) patients expressing unmutated immunoglobulin heavy variable regions (IGHVs) use the IGHV1-69 B cell receptor (BCR) in 25% of cases. Since HIV-1 envelope gp41 antibodies also frequently use IGHV1-69 gene segments, we hypothesized that IGHV1-69 B-CLL precursors may contribute to the gp41 B cell response during HIV-1 infection. To test this hypothesis, we rescued 5 IGHV1-69 unmutated antibodies as heterohybridoma IgM paraproteins and as recombinant IgG1 antibodies from B-CLL patients, determined their antigenic specificities and analyzed BCR sequences. IGHV1-69 B-CLL antibodies were enriched for reactivity with HIV-1 envelope gp41, influenza, hepatitis C virus E2 protein and intestinal commensal bacteria. These IGHV1-69 B-CLL antibodies preferentially used IGHD3 and IGHJ6 gene segments and had long heavy chain complementary determining region 3s (HCDR3s) (≥21 aa). IGHV1-69 B-CLL BCRs exhibited a phenylalanine at position 54 (F54) of the HCDR2 as do rare HIV-1 gp41 and influenza hemagglutinin stem neutralizing antibodies, while IGHV1-69 gp41 antibodies induced by HIV-1 infection predominantly used leucine (L54) allelic variants. These results demonstrate that the B-CLL cell population is an expansion of members of the innate polyreactive B cell repertoire with reactivity to a number of infectious agent antigens including intestinal commensal bacteria. The B-CLL IGHV1-69 B cell usage of F54 allelic variants strongly suggests that IGHV1-69 B-CLL gp41 antibodies derive from a restricted B cell pool that also produces rare HIV-1 gp41 and influenza hemagglutinin stem antibodies.

References

[1]  Tomaras GD, Yates NL, Liu P, Qin L, Fouda GG, et al. (2008) Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol 82: 12449–12463. doi: 10.1128/jvi.01708-08
[2]  Liao HX, Chen X, Munshaw S, Zhang R, Marshall DJ, et al. (2011) Initial antibodies binding to HIV-1 gp41 in acutely infected subjects are polyreactive and highly mutated. J Exp Med 208: 2237–2249. doi: 10.1084/jem.20110363
[3]  Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352: 804–815. doi: 10.1056/nejmra041720
[4]  Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, et al. (1998) Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102: 1515–1525. doi: 10.1172/jci3009
[5]  Ghiotto F, Fais F, Albesiano E, Sison C, Valetto A, et al. (2006) Similarities and differences between the light and heavy chain Ig variable region gene repertoires in chronic lymphocytic leukemia. Mol Med 12: 300–308.
[6]  Herve M, Xu K, Ng YS, Wardemann H, Albesiano E, et al. (2005) Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity. J Clin Invest 115: 1636–1643. doi: 10.1172/jci24387
[7]  Messmer BT, Albesiano E, Efremov DG, Ghiotto F, Allen SL, et al. (2004) Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med 200: 519–525. doi: 10.1084/jem.20040544
[8]  Murray F, Darzentas N, Hadzidimitriou A, Tobin G, Boudjogra M, et al. (2008) Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood 111: 1524–1533. doi: 10.1182/blood-2007-07-099564
[9]  Tobin G, Thunberg U, Karlsson K, Murray F, Laurell A, et al. (2004) Subsets with restricted immunoglobulin gene rearrangement features indicate a role for antigen selection in the development of chronic lymphocytic leukemia. Blood 104: 2879–2885. doi: 10.1182/blood-2004-01-0132
[10]  Widhopf GF 2nd, Rassenti LZ, Toy TL, Gribben JG, Wierda WG, et al. (2004) Chronic lymphocytic leukemia B cells of more than 1% of patients express virtually identical immunoglobulins. Blood 104: 2499–2504. doi: 10.1182/blood-2004-03-0818
[11]  Chiorazzi N, Ferrarini M (2011) Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood 117: 1781–1791. doi: 10.1182/blood-2010-07-155663
[12]  Griffin DO, Holodick NE, Rothstein TL (2011) Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+ CD27+ CD43+ CD70. J Exp Med 208: 67–80. doi: 10.1084/jem.20101499
[13]  Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, et al. (2012) Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med 209: 2183–2198. doi: 10.1084/jem.20120833
[14]  Darzentas N, Hadzidimitriou A, Murray F, Hatzi K, Josefsson P, et al. (2010) A different ontogenesis for chronic lymphocytic leukemia cases carrying stereotyped antigen receptors: molecular and computational evidence. Leukemia 24: 125–132. doi: 10.1038/leu.2009.186
[15]  Baumgarth N (2011) The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol 11: 34–46. doi: 10.1038/nri2901
[16]  Baumgarth N, Herman OC, Jager GC, Brown L, Herzenberg LA (1999) Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc Natl Acad Sci U S A 96: 2250–2255. doi: 10.1073/pnas.96.5.2250
[17]  Carbonari M, Caprini E, Tedesco T, Mazzetta F, Tocco V, et al. (2005) Hepatitis C virus drives the unconstrained monoclonal expansion of VH1-69-expressing memory B cells in type II cryoglobulinemia: a model of infection-driven lymphomagenesis. J Immunol 174: 6532–6539. doi: 10.4049/jimmunol.174.10.6532
[18]  Kipps TJ, Tomhave E, Pratt LF, Duffy S, Chen PP, et al. (1989) Developmentally restricted immunoglobulin heavy chain variable region gene expressed at high frequency in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 86: 5913–5917. doi: 10.1073/pnas.86.15.5913
[19]  Sasso EH, Johnson T, Kipps TJ (1996) Expression of the immunoglobulin VH gene 51p1 is proportional to its germline gene copy number. J Clin Invest 97: 2074–2080. doi: 10.1172/jci118644
[20]  Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.
[21]  Corti D, Suguitan AL Jr, Pinna D, Silacci C, Fernandez-Rodriguez BM, et al. (2010) Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest 120: 1663–1673. doi: 10.1172/jci41902
[22]  Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, et al. (2008) Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3: e3942. doi: 10.1371/journal.pone.0003942
[23]  Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, et al. (2011) Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208: 181–193. doi: 10.1084/jem.20101352
[24]  Sui J, Hwang WC, Perez S, Wei G, Aird D, et al. (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16: 265–273. doi: 10.1038/nsmb.1566
[25]  Gustchina E, Li M, Louis JM, Anderson DE, Lloyd J, et al. (2010) Structural basis of HIV-1 neutralization by affinity matured Fabs directed against the internal trimeric coiled-coil of gp41. PLoS Pathog 6: e1001182. doi: 10.1371/journal.ppat.1001182
[26]  Luftig MA, Mattu M, Di Giovine P, Geleziunas R, Hrin R, et al. (2006) Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody. Nat Struct Mol Biol 13: 740–747. doi: 10.1038/nsmb1127
[27]  Sabin C, Corti D, Buzon V, Seaman MS, Lutje Hulsik D, et al. (2010) Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41. PLoS Pathog 6: e1001195. doi: 10.1371/journal.ppat.1001195
[28]  Hwang KK, Chen X, Kozink DM, Gustilo M, Marshall DJ, et al. (2012) Enhanced outgrowth of EBV-transformed chronic lymphocytic leukemia B cells mediated by coculture with macrophage feeder cells. Blood 119: e35–44. doi: 10.1182/blood-2011-08-371203
[29]  Liao HX, Levesque MC, Nagel A, Dixon A, Zhang R, et al. (2009) High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J Virol Methods 158: 171–179. doi: 10.1016/j.jviromet.2009.02.014
[30]  Rossio JL, Esser MT, Suryanarayana K, Schneider DK, Bess JW Jr, et al. (1998) Inactivation of human immunodeficiency virus type 1 infectivity with preservation of conformational and functional integrity of virion surface proteins. J Virol 72: 7992–8001.
[31]  Liao HX, Sutherland LL, Xia SM, Brock ME, Scearce RM, et al. (2006) A group M consensus envelope glycoprotein induces antibodies that neutralize subsets of subtype B and C HIV-1 primary viruses. Virology 353: 268–282. doi: 10.1016/j.virol.2006.04.043
[32]  Ma BJ, Alam SM, Go EP, Lu X, Desaire H, et al. (2011) Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies. PLoS Pathog 7: e1002200. doi: 10.1371/journal.ppat.1002200
[33]  Chan CH, Hadlock KG, Foung SK, Levy S (2001) V(H)1-69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood 97: 1023–1026. doi: 10.1182/blood.v97.4.1023
[34]  Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, et al. (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324: 246–251. doi: 10.1126/science.1171491
[35]  Kawatsu K, Kumeda Y, Taguchi M, Yamazaki-Matsune W, Kanki M, et al. (2008) Development and evaluation of immunochromatographic assay for simple and rapid detection of Campylobacter jejuni and Campylobacter coli in human stool specimens. J Clin Microbiol 46: 1226–1231. doi: 10.1128/jcm.02170-07
[36]  Schelonka RL, Zemlin M, Kobayashi R, Ippolito GC, Zhuang Y, et al. (2008) Preferential use of DH reading frame 2 alters B cell development and antigen-specific antibody production. J Immunol 181: 8409–8415. doi: 10.4049/jimmunol.181.12.8409
[37]  Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, et al. (2008) Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 14: 665–674.
[38]  Logvinoff C, Major ME, Oldach D, Heyward S, Talal A, et al. (2004) Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc Natl Acad Sci U S A 101: 10149–10154. doi: 10.1073/pnas.0403519101
[39]  Gorny MK, Wang XH, Williams C, Volsky B, Revesz K, et al. (2009) Preferential use of the VH5-51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Mol Immunol 46: 917–926. doi: 10.1016/j.molimm.2008.09.005
[40]  Dennison SM, Anasti K, Scearce RM, Sutherland L, Parks R, et al. (2011) Nonneutralizing HIV-1 gp41 envelope cluster II human monoclonal antibodies show polyreactivity for binding to phospholipids and protein autoantigens. J Virol 85: 1340–1347. doi: 10.1128/jvi.01680-10
[41]  Davies J, Riechmann L (1996) Affinity improvement of single antibody VH domains: residues in all three hypervariable regions affect antigen binding. Immunotechnology 2: 169–179. doi: 10.1016/s1380-2933(96)00045-0
[42]  Schroeder HW Jr, Hillson JL, Perlmutter RM (1987) Early restriction of the human antibody repertoire. Science 238: 791–793. doi: 10.1126/science.3118465
[43]  Kipps TJ, Robbins BA, Carson DA (1990) Uniform high frequency expression of autoantibody-associated crossreactive idiotypes in the primary B cell follicles of human fetal spleen. J Exp Med 171: 189–196. doi: 10.1084/jem.171.1.189
[44]  Kipps TJ, Duffy SF (1991) Relationship of the CD5 B cell to human tonsillar lymphocytes that express autoantibody-associated cross-reactive idiotypes. J Clin Invest 87: 2087–2096. doi: 10.1172/jci115239
[45]  Kipps TJ, Robbins BA, Kuster P, Carson DA (1988) Autoantibody-associated cross-reactive idiotypes expressed at high frequency in chronic lymphocytic leukemia relative to B-cell lymphomas of follicular center cell origin. Blood 72: 422–428.
[46]  Sasso EH, Willems van Dijk K, Bull AP, Milner EC (1993) A fetally expressed immunoglobulin VH1 gene belongs to a complex set of alleles. J Clin Invest 91: 2358–2367. doi: 10.1172/jci116468
[47]  Weller S, Braun MC, Tan BK, Rosenwald A, Cordier C, et al. (2004) Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104: 3647–3654. doi: 10.1182/blood-2004-01-0346
[48]  Bomsel M, Heyman M, Hocini H, Lagaye S, Belec L, et al. (1998) Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM. Immunity 9: 277–287. doi: 10.1016/s1074-7613(00)80610-x
[49]  Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, et al. (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467: 591–595. doi: 10.1038/nature09385
[50]  Lanemo Myhrinder A, Hellqvist E, Sidorova E, Soderberg A, Baxendale H, et al. (2008) A new perspective: molecular motifs on oxidized LDL, apoptotic cells, and bacteria are targets for chronic lymphocytic leukemia antibodies. Blood 111: 3838–3848. doi: 10.1182/blood-2007-11-125450
[51]  Morris L, Chen X, Alam M, Tomaras G, Zhang R, et al. (2011) Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting. PLoS One 6: e23532. doi: 10.1371/journal.pone.0023532

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133