A new high molar extinction coefficient organic-ruthenium(II) polypyridyl complex sensitizer (RD-Cou) that contains 2, ,6, -tetramethyl-9-thiophene-2-yl-2,3,5,6,6a,11c-hexahydro1H,4H-11oxa-3a-aza-benzoanthracene-10-one as extended -conjugation of ancillary bipyridine ligand, 4, -dicaboxy-2, , -bipyridine, and a thiocyanate ligand in its molecular structure has been synthesized and completely characterized by CHN, Mass, 1H-NMR, UV-Vis, and fluorescence spectroscopies as well as cyclic voltammetry. The new sensitizer was tested in dye-sensitized solar cells using a durable redox electrolyte and compared its performance to that of standard sensitizer Z-907. 1. Introduction The increasing demand for power supply as well as environmental concern for the consumption of fossil fuel have triggered a greater focus all over the world on renewable energy sources over the past decades [1]. In this context, solar energy appears to be very attractive alternate: covering 0.16% of the earth with 10% efficient solar conversion systems would provide power nearly twice the world’s consumption rate of fossil energy [2]. For this reason, dye-sensitized solar cells (DSSC) have emerged as one of the most promising candidates because of its cost-effective manufacturing, a respectable high efficiency and a remarkable stability under the prolonged thermal and light soaking dual stress among various photovoltaics [3–5]. A typical DSSC system consists of a nanocrystalline semiconductor that adsorbs a sensitizer on its surface, a Pt-counter electrode, and a redox mediator. The photosensitizer plays a crucial role in achieving higher photoconversion efficiency and has been actively studied globally. A wide variety of sensitizers have been studied for DSSC that includes various metal complexes, organic molecules, porphyrins, and phthalocyanines and so forth [6–9]. But only ruthenium-based sensitizers could have marked their way towards commercialization because of their high photoconversion efficiencies. The most successful ruthenium charge transfer sensitizers employed in such cells are bis(tetrabutylammonium)-cis-di(thiocyanato)-N,N′-bis(4-carboxylato-4′-carboxylic acid-2,2′-bipyridine)ruthenium(II) (the N719 dye) and trithiocyanato 4,4′4′′-tricaboxy-2,2′:6′,2′′-terpyridine ruthenium(II) (the black dye) produced solar-energy-to-electricity conversion efficiencies of >11% [10–13]. The high efficiency of these complexes are attributed to its suitable ground- and excited-state energy levels with respect to the nanocrystalline TiO2 conduction band energy and matching redox properties
References
[1]
N. Armaroli and V. Balzani, “The future of energy supply: challenges and opportunities,” Angewandte Chemie—International Edition, vol. 46, no. 1-2, pp. 52–66, 2007.
[2]
R. F. Service, “Is it time to shoot for the sun?” Science, vol. 309, no. 5734, pp. 548–551, 2005.
[3]
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010.
[4]
M. Gr?tzel, “Recent advances in sensitized mesoscopic solar cells,” Accounts of Chemical Research, vol. 42, no. 11, pp. 1788–1798, 2009.
[5]
A. J?ger-Waldau, “Photovoltaics and renewable energies in Europe,” Renewable and Sustainable Energy Reviews, vol. 11, no. 7, pp. 1414–1437, 2007.
[6]
G. Zhang, H. Bala, Y. Cheng et al., “High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer,” Chemical Communications, no. 16, pp. 2198–2200, 2009.
[7]
T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Gr?tzel, “Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins,” Angewandte Chemie—International Edition, vol. 49, no. 37, pp. 6646–6649, 2010.
[8]
L. Giribabu, Ch. Vijaykumar, P. Y. Reddy, J. H. Yum, M. Gr?tzel, and M. K. Nazeeruddin, “Unsymmetrical extended π-conjugated zinc phthalocyanine for sensitization of nanocrystalline TiO2 films,” Journal of Chemical Sciences, vol. 121, no. 1, pp. 75–82, 2009.
[9]
P. Y. Reddy, L. Giribabu, C. Lyness et al., “Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine,” Angewandte Chemie—International Edition, vol. 46, no. 3, pp. 373–376, 2007.
[10]
M. Gr?tzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338–344, 2001.
[11]
M. K. Nazeeruddin, P. Péchy, T. Renouard et al., “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells,” Journal of the American Chemical Society, vol. 123, no. 8, pp. 1613–1624, 2001.
[12]
M. K. Nazeeruddin, A. Kay, I. Rodicio et al., “Conversion of light to electricity by cis-X2bis(2, -bipyridyl-4, -dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl?, Br?, I?, CN?, and SCN?) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, vol. 115, no. 14, pp. 6382–6390, 1993.
[13]
B. O'Regan and M. Gr?tzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737–740, 1991.
[14]
P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gr?tzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte,” Nature Materials, vol. 2, no. 6, pp. 402–407, 2003.
[15]
D. Kuang, P. Wang, S. Ito, S. M. Zakeeruddin, and M. Gr?tzel, “Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7732–7733, 2006.
[16]
P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gr?tzel, “A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells,” Journal of the American Chemical Society, vol. 127, no. 3, pp. 808–809, 2005.
[17]
P. Wang, S. M. Zakeeruddin, J. E. Moser et al., “Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells,” Advanced Materials, vol. 16, no. 20, pp. 1806–1811, 2004.
[18]
L. Giribabu, T. Bessho, M. Srinivasu, et al., “A new family of heteroleptic ruthenium polypyridyl complexes for sensitization of nanocrystalline TiO2 Flms,” Dalton Transactions, vol. 40, pp. 4497–4504, 2011.
[19]
L. Giribabu, V. K. Singh, M. Srinivasu, et al., “Synthesis and photoelectrochemical chacterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex,” Journal of Chemical Science. In press.
[20]
L. Giribabu, Ch. Vijaykumar, C. S. Rao et al., “High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells,” Energy and Environmental Science, vol. 2, no. 7, pp. 770–773, 2009.
[21]
K. J. Jiang, N. Masaki, J. B. Xia, S. Noda, and S. Yanagida, “A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl- conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells,” Chemical Communications, no. 23, pp. 2460–2462, 2006.
[22]
C. Y. Chen, N. Pootrakulchote, S. J. Wu et al., “New ruthenium sensitizer with carbazole antennas for efficient and stable Thin-film Dye-sensitized solar cells,” Journal of Physical Chemistry C, vol. 113, no. 48, pp. 20752–20757, 2009.
[23]
K. Hara, M. Kurashige, Y. Dan-Oh et al., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells,” New Journal of Chemistry, vol. 27, no. 5, pp. 783–785, 2003.
[24]
K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%,” Chemical Communications, no. 6, pp. 569–570, 2001.
[25]
H. Zabri, I. Gillaizeau, C. A. Bignozzi et al., “Synthesis and comprehensive characterizations of new cis-RuL2X2 (X = CI, CN, and NCS) sensitizers for nanocrystalline TiO2 solar cell using bis-phosphonated bipyridine ligands (L),” Inorganic Chemistry, vol. 42, no. 21, pp. 6655–6666, 2003.
[26]
K. Hara, Z. S. Wang, T. Sato et al., “Oligothiophene-containing coumarin dyes for efficient dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15476–15482, 2005.
[27]
W. S. Wadsworth and W. D. Emmons, “The utility of phosphonate carbanions in olefin synthesis,” Journal of the American Chemical Society, vol. 83, no. 7, pp. 1733–1738, 1961.
[28]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford, Conn, USA, 2004.
[29]
L. Giribabu, Ch. Vijaykumar, V. G. Reddy et al., “Unsymmetrical alkoxy zinc phthalocyanine for sensitization of nanocrystalline TiO2 films,” Solar Energy Materials and Solar Cells, vol. 91, no. 17, pp. 1611–1617, 2007.
[30]
L. Giribabu, Ch. Vijaykumar, and P. Y. Reddy, “Porphyrin-rhodanine dyads for dye sensitized solar cells,” Journal of Porphyrins and Phthalocyanines, vol. 10, no. 8, pp. 1007–1016, 2006.
[31]
L. Giribabu, M. Chandrasekheram, M. L. Kantham et al., “Conjugated organic dyes for dye-sensitized solar cells,” Indian Journal of Chemistry—Section A, vol. 45, no. 3, pp. 629–634, 2006.
[32]
M. K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, and M. Gr?tzel, “A swift dye uptake procedure for dye sensitized solar cells,” Chemical Communications, vol. 9, no. 12, pp. 1456–1457, 2003.
[33]
N. Kopidakis, N. R. Neale, and A. J. Frank, “Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation,” Journal of Physical Chemistry B, vol. 110, no. 25, pp. 12485–12489, 2006.