全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Contemporary Genetic Structure, Phylogeography and Past Demographic Processes of Wild Boar Sus scrofa Population in Central and Eastern Europe

DOI: 10.1371/journal.pone.0091401

Full-Text   Cite this paper   Add to My Lib

Abstract:

The wild boar (Sus scrofa) is one of the most widely distributed mammals in Europe. Its demography was affected by various events in the past and today populations are increasing throughout Europe. We examined genetic diversity, structure and population dynamics of wild boar in Central and Eastern Europe. MtDNA control region (664 bp) was sequenced in 254 wild boar from six countries (Poland, Hungary, Belarus, Ukraine, Moldova and the European part of Russia). We detected 16 haplotypes, all known from previous studies in Europe; 14 of them belonged to European 1 (E1) clade, including 13 haplotypes from E1-C and one from E1-A lineages. Two haplotypes belonged respectively to the East Asian and the Near Eastern clade. Both haplotypes were found in Russia and most probably originated from the documented translocations of wild boar. The studied populations showed moderate haplotype (0.714±0.023) and low nucleotide diversity (0.003±0.002). SAMOVA grouped the genetic structuring of Central and Eastern European wild boar into three subpopulations, comprising of: (1) north-eastern Belarus and the European part of Russia, (2) Poland, Ukraine, Moldova and most of Belarus, and (3) Hungary. The multimodal mismatch distribution, Fu's Fs index, Bayesian skyline plot and the high occurrence of shared haplotypes among populations did not suggest strong demographic fluctuations in wild boar numbers in the Holocene and pre-Holocene times. This study showed relatively weak genetic diversity and structure in Central and Eastern European wild boar populations and underlined gaps in our knowledge on the role of southern refugia and demographic processes shaping genetic diversity of wild boar in this part of Europe.

References

[1]  Lucchini V, Meijaard E, Diong CH, Groves CP, Randi E (2005) New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. J Zool 266: 25–35. doi: 10.1017/s0952836905006588
[2]  Scandura M, Iacolina L, Apollonio M (2011) Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure, and wild x domestic hybridization. Mammal Rev 41: 125–137. doi: 10.1111/j.1365-2907.2010.00182.x
[3]  Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mammal Rev 36: 251–265. doi: 10.1111/j.1365-2907.2006.00093.x
[4]  Danilkin AA (2001) The wild boar: An unprecedented spread or restoration of the species range? Dokl Biol Sci 380: 457–460.
[5]  Scandura M, Iacolina L, Crestanello B, Pecchioli E, Di Benedetto MF, et al. (2008) Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol Ecol 17: 1745–1762. doi: 10.1111/j.1365-294x.2008.03703.x
[6]  Alexandri P, Triantafyllidis A, Papakostas S, Chatzinikos E, Platis P, et al. (2012) The Balkans and the colonization of Europe: the post-glacial range expansion of the wild boar, Sus scrofa. J Biogeogr 39: 713–723. doi: 10.1111/j.1365-2699.2011.02636.x
[7]  Corbet GB (1978) The Mammals of the Palaearctic Region: a Taxonomic Review. London: Cornell University Press, 314 p.
[8]  Apollonio M, Andersen R., Putman R, (2010) European Ungulates and their Management in the 21st century. Cambridge: Cambridge University Press, 618 p.
[9]  J?drzejewska B, J?drzejewski W, Bunevich AN, Mi?kowski L, Krasiński ZA (1997) Factors shaping population densities and increase rates of ungulates in Bia?owie?a Primeval Forest (Poland and Belarus) in the 19th and 20th centuries. Acta Theriol 42: 399–451.
[10]  Faragó S, Náhlik A (1997) A vadállomány szabályozása (Regulation of games). Budapest: Mez?gazda Press. 315 p.
[11]  Saez-Royuela C, Telleria JL (1986) The increased population of the wild boar (Sus scrofa L.) in Europe. Mammal Rev 16: 97–101. doi: 10.1111/j.1365-2907.1986.tb00027.x
[12]  Feichtner B (1998) Causes of fluctuations in the hunting kill of wild boar in the Saarland. Z Jagdwissenschaft 44: 140–150. doi: 10.1007/bf02250741
[13]  Melis C, Szafrańska PA, J?drzejewska B, Bartoń K (2006) Biogeographical variation in the population density of Wild boar (Sus scrofa) in western Eurasia. J Biogeogr 33: 803–811. doi: 10.1111/j.1365-2699.2006.01434.x
[14]  Frantz AC, Zachos FE, Julia K, Cellina S, Bertouille S, et al. (2013) Genetic evidence for introgression between domestic pigs and wild boars (Sus scrofa) in Belgium and Luxembourg: a comparative approach with multiple marker systems. Biol J Lin Soc 110: 104–115 DOI: 10.1111/bij.12111.
[15]  McDevitt AD, Carden RF, Coscia I, Frantz AC (2013) Are wild boars roaming Ireland once more? Eur J Wildl Res 59: 761–764. doi: 10.1007/s10344-013-0721-z
[16]  Alves A, Ovilo C, Rodriguez MC, Siliò L (2003) Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and others domestic and wild pig populations. Anim Genet 34: 319–324. doi: 10.1046/j.1365-2052.2003.01010.x
[17]  Montiel-Sosa JF, Ruiz-Pesini E, Montoya J, Roncalés P, López-Pérez MJ, et al. (2000) Direct and highly species-specific detection of pork meat and fat in meat products by PCR amplification of mitochondrial DNA. J Agric Food Chem 48: 2829–2832. doi: 10.1021/jf9907438
[18]  Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.
[19]  Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi: 10.1093/bioinformatics/btp187
[20]  Posada D (2008) jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25: 1253–1256. doi: 10.1093/molbev/msn083
[21]  Hasegawa M, Kishino H, Yano T (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22: 160–174. doi: 10.1007/bf02101694
[22]  Gongora J, Fleming P, Spencer PB, Mason R, Garkavenko O, et al. (2004) Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. J Mol Phylogenet Evol 33: 339–348. doi: 10.1016/j.ympev.2004.06.004
[23]  Fang M, Andersson L (2006) Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc Biol Sci 273: 1803–1810. doi: 10.1098/rspb.2006.3514
[24]  Kim BW, Cho IC, Park MS, Zhong T, Lim HT, et al. (2011) Characterization of the European type of maternal lineage evident in extant Jeju native pigs. Genes Genomics 33: 111–117. doi: 10.1007/s13258-010-0129-z
[25]  Ottoni C, Girdland Flink L, Evin A, Georg C, De Cupere B, et al. (2013) Pig domestication and human-mediated dispersal in Western Eurasia revealed through ancient DNA and geometric morphometrics. Mol Biol Evol 30: 824–832. doi: 10.1093/molbev/mss261
[26]  Gongora J, Cuddahee RE, Nascimento FF, Palgrave CJ, Lowden S, et al. (2011) Rethinking the evolution of extant sub-Saharan African suids (Suidae, Artiodactyla). Zool Scr 40: 327–335. doi: 10.1111/j.1463-6409.2011.00480.x
[27]  Fang M, Berg F, Ducos A, Andersson L (2006) Mitochondrial haplotypes of European wild boars with 2n = 36 are closely related to those of European domestic pigs with 2n = 38. Anim Genet 37: 459–464. doi: 10.1111/j.1365-2052.2006.01498.x
[28]  Gongora J, Peltoniem OAT, Tammen I, Raadsma H, Moran C (2003) Analyses of possible domestic Pig Contribution in two populations of Finnish farmed Wild Boar. Acta Agric Scand Sect Anim Sci 53: 161–165. doi: 10.1080/09064710310010602
[29]  Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E, et al. (2005) Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307: 1618–1621. doi: 10.1126/science.1106927
[30]  Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, et al. (2007) Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. PNAS 104: 15276–15281. doi: 10.1073/pnas.0703411104
[31]  Okumura N, Kurosawa Y, Kobayashi E, Watanobe T, Ishiguro N, et al. (2001) Genetic relationship amongst the major non-coding regions of mitochondrial DNAs in Wild Boars and several breeds of domesticated pigs. Anim Genet 32: 139–147. doi: 10.1046/j.1365-2052.2001.00757.x
[32]  Van Asch B, Pereira F, Santos SL, Carneiro J, Santos N, et al. (2012) Mitochondrial lineages reveal intense gene flow between Iberian wild boars and South Iberian pig breeds. Anim Genet 43: 35–41. doi: 10.1111/j.1365-2052.2011.02222.x
[33]  Giuffra E, Kijas JMH, Amarger V, Carlborg ?, Jeon JT, et al. (2000) The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154: 1785–1791.
[34]  Wu GS, Yao YG, Qu KX, Ding ZL, Li H, et al. (2007) Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol 8: R245. doi: 10.1186/gb-2007-8-11-r245
[35]  Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. doi: 10.1093/bioinformatics/btg180
[36]  Bandelt HJ, Forster P, R?hl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. doi: 10.1093/oxfordjournals.molbev.a026036
[37]  Rambaut A (2012) FigTree v. 1.4.0. Available: http://tree.bio.ed.ac.uk/software/figtre?e/.
[38]  Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11: 2571–2581. doi: 10.1046/j.1365-294x.2002.01650.x
[39]  Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50.
[40]  Fu YX (1997) Statistical tests of neutrality of mutations against population growth, itchhiking and background selection. Genetics 147: 915–925.
[41]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
[42]  Drummond AJ, Rambaut A (2007) “BEAST: Bayesian evolutionary analysis by sampling trees.”. BMC Evol Biol 7: 214. doi: 10.1186/1471-2148-7-214
[43]  Pesole G, Gissi C, Chirico AD, Saccone C (1999) Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 48: 427–434 doi:10.1007/PL00006487.
[44]  Rambaut A, Drummond AJ (2007) Tracer v1.4. Available: http://beast.bio.ed.ac.uk/Tracer.
[45]  Alves PC, Pinheiro I, Godinho R, Vicente J, Gortazar C, et al. (2010) Genetic diversity of wild boar populations and domestic pig breeds (Sus scrofa) in Southwestern Europe. Biol J Lin Soc 101: 797–822. doi: 10.1111/j.1095-8312.2010.01530.x
[46]  Hajji GM, Zachos FE (2011) Mitochondrial and nuclear DNA analyses reveal pronounced genetic structuring in Tunisian wild boar Sus scrofa. Eur J Wildl Res 57: 449–456. doi: 10.1007/s10344-010-0452-3
[47]  Vila?a ST, Zachos F, Biosa D, Iacolina L, Kirschning J, et al. (2014) Mitochondrial phylogeography of the European wild boar: the effect of climate on genetic diversity and spatial lineage sorting across Europe. J Biogeogr In press doi: 10.1111/jbi.12268
[48]  Hewitt G (1999) Post-glacial re-colonisation of European biota. Biol J Lin Soc 68: 87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x
[49]  Markova AK, Simakova AN, Puzachenko AY (2009) Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24-18 kyr BP) inferred from data on plant communities and mammal assemblages. Quaternary International 201: 53–59. doi: 10.1016/j.quaint.2008.05.020
[50]  Russakov OS, Timofeeva EK (1984) Kaban. Ekologiya, resursy, khozyaistvennoe znachenie na Severo-Zapade SSSR (Wild boar. Ecology, population numbers, and economic importance in the north-west USSR), Leningrad: Izdatelstvo Leningradskokho Universiteta 1-206 p.
[51]  Fadeev EV (1969) Rezultaty iskusstvennogo rasseleniya nekotorykh vidov dikikh kopytnykh zhivotnykh v okhotnichikh khozyaistvakh Rossii (The results of a resettlement of some wild ungulate animals in the hunting ranges of Russia). Byulleten Moskovskogo Obshchestva Ispytatelei Prirody, Otdel Biologii 74: 37–46.
[52]  Fauvelot C, Bernardi G, Planes S (2003) Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change. Evolution 57: 1571–1583. doi: 10.1111/j.0014-3820.2003.tb00365.x
[53]  Martel C, Viard F, Bourguet D, Garcia-Meunier P (2004) Invasion by the marine gastropod Ocinebrellus inornatus in France. II. Expansion along the Atlantic coast. Marine Ecology Progress Series 273: 163–172. doi: 10.3354/meps273163
[54]  Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9: 552–569.
[55]  Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, et al. (2012) Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491: 393–398.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133