Patterns of inter-species secondary metabolite production by bacteria can provide valuable information relating to species ecology and evolution. The complex nature of this chemical diversity has previously been probed via directed analyses of a small number of compounds, identified through targeted assays rather than more comprehensive biochemical profiling approaches such as metabolomics. Insights into ecological and evolutionary relationships within bacterial genera can be derived through comparative analysis of broader secondary metabolite patterns, and this can also eventually assist biodiscovery search strategies for new natural products. Here, we investigated the species-level chemical diversity of the two marine actinobacterial species Salinispora arenicola and Salinispora pacifica, isolated from sponges distributed across the Great Barrier Reef (GBR), via their secondary metabolite profiles using LC-MS-based metabolomics. The chemical profiles of these two species were obtained by UHPLC-QToF-MS based metabolic profiling. The resultant data were interrogated using multivariate data analysis methods to compare their (bio)chemical profiles. We found a high level of inter-species diversity in strains from these two bacterial species. We also found rifamycins and saliniketals were produced exclusively by S. arenicola species, as the main secondary metabolites differentiating the two species. Furthermore, the discovery of 57 candidate compounds greatly increases the small number of secondary metabolites previously known to be produced by these species. In addition, we report the production of rifamycin O and W, a key group of ansamycin compounds, in S. arenicola for the first time. Species of the marine actinobacteria harbour a much wider spectrum of secondary metabolites than suspected, and this knowledge may prove a rich field for biodiscovery as well as a database for understanding relationships between speciation, evolution and chemical ecology.
References
[1]
Paul VJ, Puglisi MP, Ritson-Williams R (2006) Marine chemical ecology. Nat Prod Rep 23: 153–180. doi: 10.1039/b404735b
[2]
Phelan VV, Liu W-T, Pogliano K, Dorrestein PC (2011) Microbial metabolic exchange - the chemotype-to-phenotype link. Nat Chem Biol 8: 26–35. doi: 10.1038/nchembio.739
[3]
Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362: 1195–1200. doi: 10.1098/rstb.2007.2044
[4]
Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2: 666–673. doi: 10.1038/nchembio841
[5]
Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68: 5005–5011. doi: 10.1128/aem.68.10.5005-5011.2002
[6]
Ahmed L, Jensen PR, Freel KC, Brown R, Jones AL, et al. (2013) Salinispora pacifica sp. nov., an actinomycete from marine sediments. Antonie van Leeuwenhoek 103: 1069–1078. doi: 10.1007/s10482-013-9886-4
[7]
Maldonado LA, Fenical W, Jensen PR, Kauffman CA, Mincer TJ, et al. (2005) Salinispora arenicola gen. nov., sp. nov. and Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55: 1759–1766. doi: 10.1099/ijs.0.63625-0
[8]
Fenical W, Jensen PR, Palladino MA, Lam KS, Lloyd GK, et al. (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 17: 2175–2180. doi: 10.1016/j.bmc.2008.10.075
[9]
Kim TK, Hewavitharana AK, Shaw PN, Fuerst JA (2006) Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl Environ Microbiol 72: 2118–2125. doi: 10.1128/aem.72.3.2118-2125.2006
[10]
Ejje N, Soe CZ, Gu J, Codd R (2013) The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics 5(11): 1519–1528. doi: 10.1039/c3mt00230f
[11]
Edlund A, Loesgen S, Fenical W, Jensen PR (2011) Geographic distribution of secondary metabolite genes in the marine actinomycete Salinispora arenicola. Appl Environ Microbiol 77: 5916–5925. doi: 10.1128/aem.00611-11
[12]
Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, et al. (2009) Genomic islands link secondary metabolism to functional adaptation in marine actinobacteria. ISME J 3: 1193–1203. doi: 10.1038/ismej.2009.58
[13]
Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, et al. (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104: 10376–10381. doi: 10.1073/pnas.0700962104
[14]
Freel KC, Nam SJ, Fenical W, Jensen PR (2011) Evolution of secondary metabolite genes in three closely relatedmarine actinomycete species. Appl Environ Microbiol 77: 7261–7270. doi: 10.1128/aem.05943-11
[15]
Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73: 1146–1152. doi: 10.1128/aem.01891-06
[16]
Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87: 43–48. doi: 10.1007/s10482-004-6540-1
[17]
Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9: 605–618. doi: 10.1038/nrg2386
Ricard G, McEwan NR, Dutilh BE, Jouany J-P, Macheboeuf D, et al. (2006) Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7: 22.
[20]
Kim TK, Fuerst JA (2006) Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. Environ Microbiol 8: 1460–1470. doi: 10.1111/j.1462-2920.2006.01040.x
[21]
Yu T-W, Shen Y, Doi-Katayama Y, Tang L, Park C, et al. (1999) Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. Proc Natl Acad Sci USA 96: 9051–9056. doi: 10.1073/pnas.96.16.9051
[22]
Schupp T, Traxler P, Auden J (1981) New rifamycins produced by a recombinant strain of Nocardia mediterranei. J Antibiot 34: 965. doi: 10.7164/antibiotics.34.965
[23]
Aristoff PA, Garcia GA, Kirchhoff PD, Hollis SH (2010) Rifamycins-obstacles and opportunities. Tuberculosis 90: 94–118. doi: 10.1016/j.tube.2010.02.001
[24]
Banerjee U, Saxena B, Chisti Y (1992) Biotransformations of rifamycins: process possibilities. Biotechnol Adv 10: 577–595. doi: 10.1016/0734-9750(92)91454-m
[25]
Krug D, Zurek G, Schneider B, Garcia R, Muller R (2008) Efficient mining of myxobacterial metabolite profiles enabled by liquid chromatography-electrospray ionisation-time-of-flight mass spectrometry and compound-based principal component analysis. Anal Chim Acta 624: 97–106. doi: 10.1016/j.aca.2008.06.036
[26]
Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, et al. (2008) Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol 74: 3058–3068. doi: 10.1128/aem.02863-07
[27]
Eustáquio AS, Nam S-J, Penn K, Lechner A, Wilson MC, et al. (2011) The discovery of Salinosporamide K from the marine bacterium “Salinispora pacifica” by genome mining gives insight into pathway evolution. ChemBioChem 12: 61–64. doi: 10.1002/cbic.201000564
[28]
Hornung A, Bertazzo M, Dziarnowski A, Schneider K, Welzel K, et al. (2007) A genomic screening approach to the structure guided identification of drug candidates from natural sources. ChemBioChem 8: 757–766. doi: 10.1002/cbic.200600375
[29]
Zhou J, Kang S, Schadt CW, Garten CT (2008) Spatial scaling of functional gene diversity across various microbial taxa. Proc Natl Acad Sci USA 105: 7768. doi: 10.1073/pnas.0709016105
[30]
Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16: 373–378. doi: 10.1016/s0167-7799(98)01214-1
[31]
Hodson MP, Dear GJ, Roberts AD, Haylock CL, Ball RJ, et al. (2007) A gender-specific discriminator in Sprague–Dawley rat urine: the deployment of a metabolic profiling strategy for biomarker discovery and identification. Anal Biochem 362: 182–192. doi: 10.1016/j.ab.2006.12.037
[32]
Dunn WB, Goodacre R, Neyses L, Mamas M (2011) Integration of metabolomics in heart disease and diabetes research: current achievements and future outlook. Bioanalysis 3: 2205–2222. doi: 10.4155/bio.11.223
[33]
Vidgen M, Hooper JNA, Fuerst J (2011) Diversity and distribution of the bioactive actinobacterial genus Salinispora from sponges along the Great Barrier Reef. Antonie Van Leeuwenhoek 101: 603–618. doi: 10.1007/s10482-011-9676-9
[34]
Ng YK, Hewavitharana AK, Webb R, Shaw PN, Fuerst JA (2012) Developmental cycle and pharmaceutically relevant compounds of Salinispora actinobacteria isolated from Great Barrier Reef marine sponges. Appl Microbiol Biotechnol 97: 3097–3108. doi: 10.1007/s00253-012-4479-0
[35]
Hewavitharana AK, Shaw PN, Kim TK, Fuerst JA (2007) Screening of rifamycin producing marine sponge bacteria by LC-MS-MS. J Chromatogr B 852: 362–366. doi: 10.1016/j.jchromb.2007.01.042
[36]
Kind T, Fiehn O (2007) Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics 8: 105. doi: 10.1186/1471-2105-8-105
[37]
Barrett RD, Schluter D (2008) Adaptation from standing genetic variation. Trends Ecol Evol 23: 38–44. doi: 10.1016/j.tree.2007.09.008
[38]
Macel M, Van D, Nicole M, Keurentjes JJ (2010) Metabolomics: the chemistry between ecology and genetics. Mol Ecol Resour 10: 583–593. doi: 10.1111/j.1755-0998.2010.02854.x
[39]
Wilson MC, Gulder TAM, Mahmud T, Moore BS (2010) Shared biosynthesis of the saliniketals and rifamycins in Salinispora arenicola is controlled by the sare1259-encoded cytochrome P450. J Am Chem Soc 132: 12757–12765. doi: 10.1021/ja105891a
[40]
Zhao W, Zhong Y, Yuan H, Wang J, Zheng H, et al. (2010) Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 20: 1096–1108. doi: 10.1038/cr.2010.87
[41]
Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56: 457–487. doi: 10.1146/annurev.micro.56.012302.160634
[42]
Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, et al. (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8: e1000546. doi: 10.1371/journal.pbio.1000546
[43]
Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, et al. (2003) Salinosporamide A: A highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem Int Ed Engl 42: 355–357. doi: 10.1002/anie.200390115
[44]
Larsen TO, Smedsgaard J, Nielsen KF, Hansen ME, Frisvad JC (2005) Phenotypic taxonomy and metabolite profiling in microbial drug discovery. Nat Prod Rep 22: 672–695. doi: 10.1039/b404943h