Immune recovery after profound lymphopenia is a major challenge in many clinical situations, such as allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recovery depends, in a first step, on hematopoietic lymphoid progenitors production in the bone marrow (BM). In this study, we characterized CD34+Lin?CD10+ lymphoid progenitors in the peripheral blood of allo-HSCT patients. Our data demonstrate a strong recovery of this population 3 months after transplantation. This rebound was abolished in patients who developed acute graft-versus-host disease (aGVHD). A similar recovery profile was found for both CD24+ and CD24? progenitor subpopulations. CD34+lin?CD10+CD24? lymphoid progenitors sorted from allo-HSCT patients preserved their T cell potentiel according to in vitro T-cell differentiation assay and the expression profile of 22 genes involved in T-cell differentiation and homing. CD34+lin?CD10+CD24? cells from patients without aGVHD had reduced CXCR4 gene expression, consistent with an enhanced egress from the BM. CCR7 gene expression was reduced in patients after allo-HSCT, as were its ligands CCL21 and CCL19. This reduction was particularly marked in patients with aGVHD, suggesting a possible impact on thymic homing. Thus, the data presented here identify this population as an important early step in T cell reconstitution in humans and so, an important target when seeking to enhance immune reconstitution.
References
[1]
Krenger W, Blazar BR, Holl?nder GA (2011) Thymic T-cell development in allogeneic stem cell transplantation. Blood 117: 6768–6776. doi: 10.1182/blood-2011-02-334623
[2]
Clave E, Rocha V, Talvensaari K, Busson M, Douay C, et al. (2005) Prognostic value of pretransplantation host thymic function in HLA-identical sibling hematopoietic stem cell transplantation. Blood 105: 2608–2613. doi: 10.1182/blood-2004-04-1667
[3]
Roux E, Dumont-Girard F, Starobinski M, Siegrist CA, Helg C, et al. (2000) Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. Blood 96: 2299–2303.
[4]
Talvensaari K, Clave E, Douay C, Rabian C, Garderet L, et al. (2002) A broad T-cell repertoire diversity and an efficient thymic function indicate a favorable long-term immune reconstitution after cord blood stem cell transplantation. Blood 99: 1458–1464. doi: 10.1182/blood.v99.4.1458
[5]
Martins VC, Ruggiero E, Schlenner SM, Madan V, Schmidt M, et al. (2012) Thymus-autonomous T cell development in the absence of progenitor import. The Journal of experimental medicine 209: 1409–1417. doi: 10.1084/jem.20120846
[6]
Peaudecerf L, Lemos S, Galgano A, Krenn G, Vasseur F, et al. (2012) Thymocytes may persist and differentiate without any input from bone marrow progenitors. The Journal of experimental medicine 209: 1401–1408. doi: 10.1084/jem.20120845
[7]
Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell stem cell 10: 120–136. doi: 10.1016/j.stem.2012.01.006
[8]
Six EM, Bonhomme D, Monteiro M, Beldjord K, Jurkowska M, et al. (2007) A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. The Journal of experimental medicine 204: 3085–3093. doi: 10.1084/jem.20071003
[9]
Doulatov S, Notta F, Eppert K, Nguyen LT, Ohashi PS, et al. (2010) Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nature immunology 11: 585–593. doi: 10.1038/ni.1889
[10]
Kohn LA, Hao Q-L, Sasidharan R, Parekh C, Ge S, et al. (2012) Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nature immunology 13: 963–971. doi: 10.1038/ni.2405
[11]
Hauri-Hohl MM, Keller MP, Gill J, Hafen K, Pachlatko E, et al. (2007) Donor T-cell alloreactivity against host thymic epithelium limits T-cell development after bone marrow transplantation. Blood 109: 4080–4088. doi: 10.1182/blood-2006-07-034157
[12]
Seemayer TA, Lapp WS, Bolande RP (1977) Thymic involution in murine graft-versus-host reaction. Epithelial injury mimicking human thymic dysplasia. The American journal of pathology 88: 119–134.
[13]
Krenger W, Rossi S, Piali L, Holl?nder GA (2000) Thymic atrophy in murine acute graft-versus-host disease is effected by impaired cell cycle progression of host pro-T and pre-T cells. Blood 96: 347–354.
[14]
Shono Y, Ueha S, Wang Y, Abe J, Kurachi M, et al. (2010) Bone marrow graft-versus-host disease: early destruction of hematopoietic niche after MHC-mismatched hematopoietic stem cell transplantation. Blood 115: 5401–5411. doi: 10.1182/blood-2009-11-253559
[15]
Zlotoff DA, Zhang SL, De Obaldia ME, Hess PR, Todd SP, et al. (2011) Delivery of progenitors to the thymus limits T-lineage reconstitution after bone marrow transplantation. Blood 118: 1962–1970. doi: 10.1182/blood-2010-12-324954
[16]
Clave E, Busson M, Douay C, Peffault de Latour R, Berrou J, et al. (2009) Acute graft-versus-host disease transiently impairs thymic output in young patients after allogeneic hematopoietic stem cell transplantation. Blood 113: 6477–6484. doi: 10.1182/blood-2008-09-176594
[17]
Glucksberg H, Storb R, Fefer A, Buckner CD, Neiman PE, et al. (1974) Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation 18: 295–304. doi: 10.1097/00007890-197410000-00001
[18]
Mavroudis D, Read E, Cottler-Fox M, Couriel D, Molldrem J, et al. (1996) CD34+ cell dose predicts survival, posttransplant morbidity, and rate of hematologic recovery after allogeneic marrow transplants for hematologic malignancies. Blood 88: 3223–3229. doi: 10.1016/s0887-7963(97)80081-8
[19]
Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, et al. (1995) An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86: 3961–3969.
[20]
Schmitt TM, Zú?iga-Pflücker JC (2002) Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17: 749–756. doi: 10.1016/s1074-7613(02)00474-0
[21]
Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H (2004) Quantification of multiple gene expression in individual cells. Genome research 14: 1938–1947. doi: 10.1101/gr.2890204
[22]
Zlotoff DA, Bhandoola A (2011) Hematopoietic progenitor migration to the adult thymus. Annals of the New York Academy of Sciences 1217: 122–138. doi: 10.1111/j.1749-6632.2010.05881.x
[23]
Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977–988. doi: 10.1016/j.immuni.2006.10.016
[24]
Tzeng Y-S, Li H, Kang Y-L, Chen W-C, Cheng W-C, et al. (2011) Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood 117: 429–439. doi: 10.1182/blood-2010-01-266833
[25]
Krueger A, Willenzon S, Lyszkiewicz M, Kremmer E, F?rster R (2010) CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood 115: 1906–1912. doi: 10.1182/blood-2009-07-235721
[26]
Zlotoff DA, Sambandam A, Logan TD, Bell JJ, Schwarz BA, et al. (2010) CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115: 1897–1905. doi: 10.1182/blood-2009-08-237784
[27]
Rossi FMV, Corbel SY, Merzaban JS, Carlow DA, Gossens K, et al. (2005) Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nature immunology 6: 626–634. doi: 10.1038/ni1203
[28]
Haddad R, Guimiot F, Six E, Jourquin F, Setterblad N, et al. (2006) Dynamics of thymus-colonizing cells during human development. Immunity 24: 217–230. doi: 10.1016/j.immuni.2006.01.008
[29]
Dean RM, Fry T, Mackall C, Steinberg SM, Hakim F, et al. (2008) Association of serum interleukin-7 levels with the development of acute graft-versus-host disease. J Clin Oncol 26: 5735–5741. doi: 10.1200/jco.2008.17.1314
[30]
Thiant S, Labalette M, Trauet J, Coiteux V, de Berranger E, et al. (2011) Plasma levels of IL-7 and IL-15 after reduced intensity conditioned allo-SCT and relationship to acute GVHD. Bone Marrow Transplant 46: 1374–1381. doi: 10.1038/bmt.2010.300
[31]
Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, et al. (1995) Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. The New England journal of medicine 332: 143–149. doi: 10.1056/nejm199501193320303
[32]
Hakim FT, Memon SA, Cepeda R, Jones EC, Chow CK, et al. (2005) Age-dependent incidence, time course, and consequences of thymic renewal in adults. The Journal of clinical investigation 115: 930–939. doi: 10.1172/jci22492
[33]
Dar A, Schajnovitz A, Lapid K, Kalinkovich A, Itkin T, et al. (2011) Rapid mobilization of hematopoietic progenitors by AMD3100 and catecholamines is mediated by CXCR4-dependent SDF-1 release from bone marrow stromal cells. Leukemia 25: 1286–1296. doi: 10.1038/leu.2011.62
[34]
Rettig MP, Ansstas G, DiPersio JF (2012) Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 26: 34–53. doi: 10.1038/leu.2011.197
[35]
Lévesque J-P, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. The Journal of clinical investigation 111: 187–196. doi: 10.1172/jci200315994
[36]
Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495: 231–235. doi: 10.1038/nature11885
[37]
Greenbaum A, Hsu Y-MS, Day RB, Schuettpelz LG, Christopher MJ, et al. (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495: 227–230. doi: 10.1038/nature11926
[38]
Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, et al. (2006) Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature medicine 12: 657–664. doi: 10.1038/nm1417
[39]
Misslitz A, Pabst O, Hintzen G, Ohl L, Kremmer E, et al. (2004) Thymic T cell development and progenitor localization depend on CCR7. The Journal of experimental medicine 200: 481–491. doi: 10.1084/jem.20040383
[40]
Tichelli A, Gratwohl A (2008) Vascular endothelium as ‘novel’ target of graft-versus-host disease. Best practice & research Clinical haematology 21: 139–148. doi: 10.1016/j.beha.2008.02.002
[41]
Hosoya T, Kuroha T, Moriguchi T, Cummings D, Maillard I, et al. (2009) GATA-3 is required for early T lineage progenitor development. The Journal of experimental medicine 206: 2987–3000. doi: 10.1084/jem.20090934
[42]
Mackall CL, Fry TJ, Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nature reviews Immunology 11: 330–342. doi: 10.1038/nri2970
[43]
Ludin A, Itkin T, Gur-Cohen S, Mildner A, Shezen E, et al. (2012) Monocytes-macrophages that express α-smooth muscle actin preserve primitive hematopoietic cells in the bone marrow. Nature immunology 13: 1072–1082. doi: 10.1038/ni.2408
[44]
Reimann C, Six E, Dal-Cortivo L, Schiavo A, Appourchaux K, et al. (2012) Human T-lymphoid progenitors generated in a feeder-cell-free Delta-like-4 culture system promote T-cell reconstitution in NOD/SCID/γc(-/-) mice. Stem cells (Dayton, Ohio) 30: 1771–1780. doi: 10.1002/stem.1145