全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

NOD2/RICK-Dependent β-Defensin 2 Regulation Is Protective for Nontypeable Haemophilus influenzae-Induced Middle Ear Infection

DOI: 10.1371/journal.pone.0090933

Full-Text   Cite this paper   Add to My Lib

Abstract:

Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media.

References

[1]  Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9: 4–9. doi: 10.1016/s0952-7915(97)80152-5
[2]  Lehrer RI, Ganz T (1999) Antimicrobial peptides in mammalian and insect host defence. Curr Opin Immunol 11: 23–27. doi: 10.1016/s0952-7915(99)80005-3
[3]  Martin E, Ganz T, Lehrer RI (1995) Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol 58: 128–136.
[4]  Moon SK, Lee HY, Li JD, Nagura M, Kang SH, et al. (2002) Activation of a Src-dependent Raf-MEK1/2-ERK signaling pathway is required for IL-1alpha-induced upregulation of beta-defensin 2 in human middle ear epithelial cells. Biochim Biophys Acta 1590: 41–51. doi: 10.1016/s0167-4889(02)00196-9
[5]  Lee HY, Andalibi A, Webster P, Moon SK, Teufert K, et al. (2004) Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Infect Dis 4: 12.
[6]  Moon SK, Lee HY, Pan H, Takeshita T, Park R, et al. (2006) Synergistic effect of interleukin 1 alpha on nontypeable Haemophilus influenzae-induced up-regulation of human beta-defensin 2 in middle ear epithelial cells. BMC Infect Dis 6: 12.
[7]  Lee HY, Takeshita T, Shimada J, Akopyan A, Woo JI, et al. (2008) Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells. BMC Infect Dis 8: 87. doi: 10.1186/1471-2334-8-87
[8]  Maxson S, Yamauchi T (1996) Acute otitis media. Pediatr Rev 17: 191–195; quiz 196.
[9]  Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, et al. (2006) Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296: 202–211. doi: 10.1001/jama.296.2.202
[10]  Starner TD, Zhang N, Kim G, Apicella MA, McCray PB Jr (2006) Haemophilus influenzae forms biofilms on airway epithelia: implications in cystic fibrosis. Am J Respir Crit Care Med 174: 213–220. doi: 10.1164/rccm.200509-1459oc
[11]  Gibson BW, Melaugh W, Phillips NJ, Apicella MA, Campagnari AA, et al. (1993) Investigation of the structural heterogeneity of lipooligosaccharides from pathogenic Haemophilus and Neisseria species and of R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry. J Bacteriol 175: 2702–2712.
[12]  Foxwell AR, Kyd JM, Cripps AW (1998) Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol Mol Biol Rev 62: 294–308.
[13]  Murphy TF (2000) Bacterial otitis media: pathogenetic considerations. Pediatr Infect Dis J 19: S9–15 discussion S15–16. doi: 10.1097/00006454-200005001-00003
[14]  Akkerman AE, Kuyvenhoven MM, van der Wouden JC, Verheij TJ (2005) Analysis of under- and overprescribing of antibiotics in acute otitis media in general practice. J Antimicrob Chemother 56: 569–574. doi: 10.1093/jac/dki257
[15]  Bluestone CD (1995) Pediatric otolaryngology: past, present, and future. Arch Otolaryngol Head Neck Surg 121: 505–508. doi: 10.1001/archotol.1995.01890050005001
[16]  Juhn SK, Jung MK, Hoffman MD, Drew BR, Preciado DA, et al. (2008) The role of inflammatory mediators in the pathogenesis of otitis media and sequelae. Clin Exp Otorhinolaryngol 1: 117–138. doi: 10.3342/ceo.2008.1.3.117
[17]  Leibovitz E, Satran R, Piglansky L, Raiz S, Press J, et al. (2003) Can acute otitis media caused by Haemophilus influenzae be distinguished from that caused by Streptococcus pneumoniae? Pediatr Infect Dis J 22: 509–515. doi: 10.1097/01.inf.0000069759.79176.e1
[18]  Darrow DH, Dash N, Derkay CS (2003) Otitis media: concepts and controversies. Curr Opin Otolaryngol Head Neck Surg 11: 416–423. doi: 10.1097/00020840-200312000-00002
[19]  Groeneveld K, van Alphen L, Eijk PP, Visschers G, Jansen HM, et al. (1990) Endogenous and exogenous reinfections by Haemophilus influenzae in patients with chronic obstructive pulmonary disease: the effect of antibiotic treatment on persistence. J Infect Dis 161: 512–517. doi: 10.1093/infdis/161.3.512
[20]  Murphy TF, Brauer AL, Schiffmacher AT, Sethi S (2004) Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170: 266–272. doi: 10.1164/rccm.200403-354oc
[21]  Ketterer MR, Shao JQ, Hornick DB, Buscher B, Bandi VK, et al. (1999) Infection of primary human bronchial epithelial cells by Haemophilus influenzae: macropinocytosis as a mechanism of airway epithelial cell entry. Infect Immun 67: 4161–4170.
[22]  Morey P, Cano V, Marti-Lliteras P, Lopez-Gomez A, Regueiro V, et al. (2011) Evidence for a non-replicative intracellular stage of nontypable Haemophilus influenzae in epithelial cells. Microbiology 157: 234–250. doi: 10.1099/mic.0.040451-0
[23]  Swords WE, Buscher BA, Ver Steeg Ii K, Preston A, Nichols WA, et al. (2000) Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol Microbiol 37: 13–27. doi: 10.1046/j.1365-2958.2000.01952.x
[24]  Ahren IL, Williams DL, Rice PJ, Forsgren A, Riesbeck K (2001) The importance of a beta-glucan receptor in the nonopsonic entry of nontypeable Haemophilus influenzae into human monocytic and epithelial cells. J Infect Dis 184: 150–158. doi: 10.1086/322016
[25]  Meresse S, Steele-Mortimer O, Moreno E, Desjardins M, Finlay B, et al. (1999) Controlling the maturation of pathogen-containing vacuoles: a matter of life and death. Nat Cell Biol 1: E183–188. doi: 10.1038/15620
[26]  Rich KA, Burkett C, Webster P (2003) Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5: 455–468. doi: 10.1046/j.1462-5822.2003.00292.x
[27]  Clementi CF, Murphy TF (2011) Non-typeable Haemophilus influenzae invasion and persistence in the human respiratory tract. Front Cell Infect Microbiol 1: 1. doi: 10.3389/fcimb.2011.00001
[28]  Shuto T, Imasato A, Jono H, Sakai A, Xu H, et al. (2002) Glucocorticoids synergistically enhance nontypeable Haemophilus influenzae-induced Toll-like receptor 2 expression via a negative cross-talk with p38 MAP kinase. J Biol Chem 277: 17263–17270. doi: 10.1074/jbc.m112190200
[29]  Tong HH, Chen Y, James M, Van Deusen J, Welling DB, et al. (2001) Expression of cytokine and chemokine genes by human middle ear epithelial cells induced by formalin-killed Haemophilus influenzae or its lipooligosaccharide htrB and rfaD mutants. Infect Immun 69: 3678–3684. doi: 10.1128/iai.69.6.3678-3684.2001
[30]  MacArthur CJ, Hausman F, Kempton JB, Trune DR (2011) Murine middle ear inflammation and ion homeostasis gene expression. Otol Neurotol 32: 508–515. doi: 10.1097/mao.0b013e31820e6de4
[31]  Boughan PK, Argent RH, Body-Malapel M, Park JH, Ewings KE, et al. (2006) Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: critical regulators of beta-defensins during Helicobacter pylori infection. J Biol Chem 281: 11637–11648. doi: 10.1074/jbc.m510275200
[32]  Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, et al. (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281: 2005–2011. doi: 10.1074/jbc.m511044200
[33]  Ratner AJ, Aguilar JL, Shchepetov M, Lysenko ES, Weiser JN (2007) Nod1 mediates cytoplasmic sensing of combinations of extracellular bacteria. Cell Microbiol 9: 1343–1351. doi: 10.1111/j.1462-5822.2006.00878.x
[34]  Barenkamp SJ, Leininger E (1992) Cloning, expression, and DNA sequence analysis of genes encoding nontypeable Haemophilus influenzae high-molecular-weight surface-exposed proteins related to filamentous hemagglutinin of Bordetella pertussis. Infect Immun 60: 1302–1313.
[35]  Hong W, Mason K, Jurcisek J, Novotny L, Bakaletz LO, et al. (2007) Phosphorylcholine decreases early inflammation and promotes the establishment of stable biofilm communities of nontypeable Haemophilus influenzae strain 86–028NP in a chinchilla model of otitis media. Infect Immun 75: 958–965. doi: 10.1128/iai.01691-06
[36]  Woo JI, Pan H, Oh S, Lim DJ, Moon SK (2010) Spiral ligament fibrocyte-derived MCP-1/CCL2 contributes to inner ear inflammation secondary to nontypeable H. influenzae-induced otitis media. BMC Infect Dis 10: 314. doi: 10.1186/1471-2334-10-314
[37]  Shimada J, Moon SK, Lee HY, Takeshita T, Pan H, et al. (2008) Lysozyme M deficiency leads to an increased susceptibility to Streptococcus pneumoniae-induced otitis media. BMC Infect Dis 8: 134. doi: 10.1186/1471-2334-8-134
[38]  Moon SK, Woo JI, Lee HY, Park R, Shimada J, et al. (2007) Toll-like receptor 2-dependent NF-kappaB activation is involved in nontypeable Haemophilus influenzae-induced monocyte chemotactic protein 1 up-regulation in the spiral ligament fibrocytes of the inner ear. Infect Immun 75: 3361–3372. doi: 10.1128/iai.01886-06
[39]  Chun YM, Moon SK, Lee HY, Webster P, Brackmann DE, et al. (2002) Immortalization of normal adult human middle ear epithelial cells using a retrovirus containing the E6/E7 genes of human papillomavirus type 16. Ann Otol Rhinol Laryngol 111: 507–517.
[40]  Webster P (2002) Early intracellular events during internalization of Listeria monocytogenes by J774 cells. J Histochem Cytochem 50: 503–518. doi: 10.1177/002215540205000407
[41]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[42]  Oh S, Woo JI, Lim DJ, Moon SK (2012) ERK2-dependent activation of c-Jun is required for nontypeable Haemophilus influenzae-induced CXCL2 upregulation in inner ear fibrocytes. J Immunol 188: 3496–3505. doi: 10.4049/jimmunol.1103182
[43]  Gilsdorf JR, Tucci M, Marrs CF (1996) Role of pili in Haemophilus influenzae adherence to, and internalization by, respiratory cells. Pediatr Res 39: 343–348. doi: 10.1203/00006450-199602000-00025
[44]  Holmes KA, Bakaletz LO (1997) Adherence of non-typeable Haemophilus influenzae promotes reorganization of the actin cytoskeleton in human or chinchilla epithelial cells in vitro. Microb Pathog 23: 157–166. doi: 10.1006/mpat.1997.0145
[45]  Andrews NW, Webster P (1991) Phagolysosomal escape by intracellular pathogens. Parasitol Today 7: 335–340. doi: 10.1016/0169-4758(91)90212-7
[46]  Shuto T, Xu H, Wang B, Han J, Kai H, et al. (2001) Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha/beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A 98: 8774–8779. doi: 10.1073/pnas.151236098
[47]  Mikami F, Lim JH, Ishinaga H, Ha UH, Gu H, et al. (2006) The transforming growth factor-beta-Smad3/4 signaling pathway acts as a positive regulator for TLR2 induction by bacteria via a dual mechanism involving functional cooperation with NF-kappaB and MAPK phosphatase 1-dependent negative cross-talk with p38 MAPK. J Biol Chem 281: 22397–22408. doi: 10.1074/jbc.m602124200
[48]  Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, et al. (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300: 1584–1587. doi: 10.1126/science.1084677
[49]  Hruz P, Eckmann L (2008) Caspase recruitment domain-containing sensors and adaptors in intestinal innate immunity. Curr Opin Gastroenterol 24: 108–114. doi: 10.1097/mog.0b013e3282f50fdf
[50]  Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, et al. (2001) Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB. J Biol Chem 276: 4812–4818. doi: 10.1074/jbc.m008072200
[51]  Tsutsumi-Ishii Y, Nagaoka I (2003) Modulation of human beta-defensin-2 transcription in pulmonary epithelial cells by lipopolysaccharide-stimulated mononuclear phagocytes via proinflammatory cytokine production. J Immunol 170: 4226–4236. doi: 10.4049/jimmunol.170.8.4226
[52]  Vadia S, Arnett E, Haghighat AC, Wilson-Kubalek EM, Tweten RK, et al. (2011) The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathog 7: e1002356. doi: 10.1371/journal.ppat.1002356
[53]  Liang X, Ji Y (2006) Alpha-toxin interferes with integrin-mediated adhesion and internalization of Staphylococcus aureus by epithelial cells. Cell Microbiol 8: 1656–1668. doi: 10.1111/j.1462-5822.2006.00740.x
[54]  Hernandez M, Leichtle A, Pak K, Ebmeyer J, Euteneuer S, et al. (2008) Myeloid differentiation primary response gene 88 is required for the resolution of otitis media. J Infect Dis 198: 1862–1869. doi: 10.1086/593213
[55]  Horwitz MA (1988) Intracellular parasitism. Curr Opin Immunol 1: 41–46. doi: 10.1016/0952-7915(88)90049-0
[56]  Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9: 781–795. doi: 10.1038/nrm2515
[57]  Ren D, Nelson KL, Uchakin PN, Smith AL, Gu XX, et al. (2012) Characterization of extended co-culture of non-typeable Haemophilus influenzae with primary human respiratory tissues. Exp Biol Med (Maywood) 237: 540–547. doi: 10.1258/ebm.2012.011377
[58]  Crowle AJ, Dahl R, Ross E, May MH (1991) Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 59: 1823–1831.
[59]  Sinai AP, Webster P, Joiner KA (1997) Association of host cell endoplasmic reticulum and mitochondria with the Toxoplasma gondii parasitophorous vacuole membrane: a high affinity interaction. J Cell Sci 110 (Pt 17): 2117–2128.
[60]  Marti-Lliteras P, Regueiro V, Morey P, Hood DW, Saus C, et al. (2009) Nontypeable Haemophilus influenzae clearance by alveolar macrophages is impaired by exposure to cigarette smoke. Infect Immun 77: 4232–4242. doi: 10.1128/iai.00305-09
[61]  Cossart P, Mengaud J (1989) Listeria monocytogenes. A model system for the molecular study of intracellular parasitism. Mol Biol Med 6: 463–474.
[62]  Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, et al. (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278: 5509–5512. doi: 10.1074/jbc.c200673200
[63]  Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, et al. (2004) Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5: 1166–1174. doi: 10.1038/ni1131
[64]  Fritz JH, Girardin SE, Fitting C, Werts C, Mengin-Lecreulx D, et al. (2005) Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur J Immunol 35: 2459–2470. doi: 10.1002/eji.200526286
[65]  Nabatov AA, Hatzis P, Rouschop KM, van Diest P, Vooijs M (2013) Hypoxia inducible NOD2 interacts with 3-O-sulfogalactoceramide and regulates vesicular homeostasis. Biochim Biophys Acta 1830: 5277–5286. doi: 10.1016/j.bbagen.2013.07.017
[66]  Watanabe T, Jono H, Han J, Lim DJ, Li JD (2004) Synergistic activation of NF-kappaB by nontypeable Haemophilus influenzae and tumor necrosis factor alpha. Proc Natl Acad Sci U S A 101: 3563–3568. doi: 10.1073/pnas.0400557101
[67]  Xu X, Steere RR, Fedorchuk CA, Pang J, Lee JY, et al. (2011) Activation of epidermal growth factor receptor is required for NTHi-induced NF-kappaB-dependent inflammation. PLoS One 6: e28216. doi: 10.1371/journal.pone.0028216
[68]  Wang B, Lim DJ, Han J, Kim YS, Basbaum CB, et al. (2002) Novel cytoplasmic proteins of nontypeable Haemophilus influenzae up-regulate human MUC5AC mucin transcription via a positive p38 mitogen-activated protein kinase pathway and a negative phosphoinositide 3-kinase-Akt pathway. J Biol Chem 277: 949–957. doi: 10.1074/jbc.m107484200
[69]  Schroder JM (1999) Clinical significance of epithelial peptide antibiotics. BioDrugs 11: 293–300. doi: 10.2165/00063030-199911050-00001
[70]  McDermott AM, Redfern RL, Zhang B, Pei Y, Huang L, et al. (2003) Defensin expression by the cornea: multiple signalling pathways mediate IL-1beta stimulation of hBD-2 expression by human corneal epithelial cells. Invest Ophthalmol Vis Sci 44: 1859–1865. doi: 10.1167/iovs.02-0787
[71]  Kao CY, Chen Y, Thai P, Wachi S, Huang F, et al. (2004) IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-kappaB signaling pathways. J Immunol 173: 3482–3491. doi: 10.4049/jimmunol.173.5.3482
[72]  Chung WO, Hansen SR, Rao D, Dale BA (2004) Protease-activated receptor signaling increases epithelial antimicrobial peptide expression. J Immunol 173: 5165–5170. doi: 10.4049/jimmunol.173.8.5165
[73]  Tsai WH, Huang DY, Yu YH, Chen CY, Lin WW (2011) Dual roles of NOD2 in TLR4-mediated signal transduction and -induced inflammatory gene expression in macrophages. Cell Microbiol 13: 717–730. doi: 10.1111/j.1462-5822.2010.01567.x
[74]  Moreira LO, El Kasmi KC, Smith AM, Finkelstein D, Fillon S, et al. (2008) The TLR2-MyD88-NOD2-RIPK2 signalling axis regulates a balanced pro-inflammatory and IL-10-mediated anti-inflammatory cytokine response to Gram-positive cell walls. Cell Microbiol 10: 2067–2077. doi: 10.1111/j.1462-5822.2008.01189.x
[75]  Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23: 291–296. doi: 10.1016/s1471-4906(02)02246-9
[76]  Yao Q (2013) Nucleotide-binding oligomerization domain containing 2: Structure, function, and diseases. Semin Arthritis Rheum 43: 125–130. doi: 10.1016/j.semarthrit.2012.12.005
[77]  Berrington WR, Macdonald M, Khadge S, Sapkota BR, Janer M, et al. (2010) Common polymorphisms in the NOD2 gene region are associated with leprosy and its reactive states. J Infect Dis 201: 1422–1435. doi: 10.1086/651559
[78]  Wilson E, Goss MA, Marin M, Shields KE, Seward JF, et al. (2008) Varicella vaccine exposure during pregnancy: data from 10 Years of the pregnancy registry. J Infect Dis 197 Suppl 2S178–184. doi: 10.1086/522136
[79]  Theivanthiran B, Batra S, Balamayooran G, Cai S, Kobayashi K, et al. (2012) NOD2 signaling contributes to host defense in the lungs against Escherichia coli infection. Infect Immun 80: 2558–2569. doi: 10.1128/iai.06230-11
[80]  Kim YG, Kamada N, Shaw MH, Warner N, Chen GY, et al. (2011) The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34: 769–780. doi: 10.1016/j.immuni.2011.04.013
[81]  Jeong YJ, Kim CH, Song EJ, Kang MJ, Kim JC, et al. (2012) Nucleotide-binding oligomerization domain 2 (Nod2) is dispensable for the innate immune responses of macrophages against Yersinia enterocolitica. J Microbiol 50: 489–495. doi: 10.1007/s12275-012-1534-6
[82]  Chattoraj P, Yang Q, Khandai A, Al-Hendy O, Ismail N (2013) TLR2 and Nod2 mediate resistance or susceptibility to fatal intracellular Ehrlichia infection in murine models of ehrlichiosis. PLoS One 8: e58514. doi: 10.1371/journal.pone.0058514
[83]  Hotomi M, Arai J, Billal DS, Takei S, Ikeda Y, et al. (2010) Nontypeable Haemophilus influenzae isolated from intractable acute otitis media internalized into cultured human epithelial cells. Auris Nasus Larynx 37: 137–144. doi: 10.1016/j.anl.2009.03.012
[84]  Granath A, Cardell LO, Uddman R, Harder H (2011) Altered Toll- and Nod-like receptor expression in human middle ear mucosa from patients with chronic middle ear disease. J Infect 63: 174–176. doi: 10.1016/j.jinf.2011.06.006
[85]  Morrison GM, Davidson DJ, Dorin JR (1999) A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide. FEBS Lett 442: 112–116. doi: 10.1016/s0014-5793(98)01630-5
[86]  Augustin DK, Heimer SR, Tam C, Li WY, Le Due JM, et al. (2011) Role of defensins in corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Infect Immun 79: 595–605. doi: 10.1128/iai.00854-10
[87]  Jia HP, Wowk SA, Schutte BC, Lee SK, Vivado A, et al. (2000) A novel murine beta -defensin expressed in tongue, esophagus, and trachea. J Biol Chem 275: 33314–33320. doi: 10.1074/jbc.m006603200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133