[1] | Luce RD (1986) Response times. Oxford University Press.
|
[2] | Simen P, Cohen JD (2009) Explicit melioration by a neural diffusion model. Brain Research 1299: 95–117. doi: 10.1016/j.brainres.2009.07.017
|
[3] | Simen P (2012) Evidence accumulator or decision threshold – which mechanism are we observing? Frontiers in Psychology 3: 183 doi:10.3389/fpsyg.2012.00183.
|
[4] | Ratcliff R (1978) A theory of memory retrieval. Psychological Review 85: 59–108. doi: 10.1037/0033-295x.85.2.59
|
[5] | Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology 86: 1916–1936.
|
[6] | Gold JI, Shadlen MN (2007) The neural basis of decision making. Annual Review of Neuroscience 30: 535–574. doi: 10.1146/annurev.neuro.29.051605.113038
|
[7] | Churchland AK, Kiani R, Chaudhuri R, Wang XJ, Pouget A, et al. (2011) Variance as a signature of neural computations during decision making. Neuron 69: 818–831. doi: 10.1016/j.neuron.2010.12.037
|
[8] | Donner T, Siegel M, Fries P, Engel AK (2009) Buildup of choice-predictive activity in human motor cortex during perceptual decision making. Current Biology 19: 1581–1585. doi: 10.1016/j.cub.2009.07.066
|
[9] | O'Connell RG, Dockree PM, Kelly SP (2012) A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Neuroscience 15: 1729–1735. doi: 10.1038/nn.3248
|
[10] | Ho T, Brown S, Serences JT (2009) Domain general mechanisms of perceptual decision making in human cortex. Journal of Neuroscience 29: 8675–8687. doi: 10.1523/jneurosci.5984-08.2009
|
[11] | Philiastides MG, Ratcliff R, Sajda P (2006) Neural representation of task difficulty and decision making during perceptual categorization: A timing diagram. Journal of Neuroscience 26: 8965–8975. doi: 10.1523/jneurosci.1655-06.2006
|
[12] | van Vugt MK, Simen P, Nystrom L, Holmes P, Cohen JD (2012) EEG oscillations reveal neural correlates of evidence accumulation. Frontiers in Human Neuroscience 6: 106. doi: 10.3389/fnins.2012.00106
|
[13] | Gluth S, Rieskamp J, Büchel C (2013) Classic EEG motor potentials track the emergence of valuebased decisions. NeuroImage 79: 394–403. doi: 10.1016/j.neuroimage.2013.05.005
|
[14] | Snyder LH, Dickinson AR, Calton JL (2006) Preparatory delay activity in the monkey parietal reach region predicts reach reaction times. Journal of Neuroscience 26: 10091–10099. doi: 10.1523/jneurosci.0513-06.2006
|
[15] | Forstmann BU, Dutilh G, Brown S, Neumann J, von Cramon DY, et al. (2008) Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences 105: 17538–17542. doi: 10.1073/pnas.0805903105
|
[16] | van Veen V, Krug MK, Carter CS (2008) The neural and computational basis of controlled speedaccuracy tradeoff during task performance. Journal of Cognitive Neuroscience 20: 1952–1965. doi: 10.1162/jocn.2008.20146
|
[17] | Domenech P, Dreher JC (2010) Decision threshold modulation in the human brain. Journal of Neuroscience 30: 14305–14317. doi: 10.1523/jneurosci.2371-10.2010
|
[18] | Shadlen MN, Kiani R (2013) Decision making as a window on cognition. Neuron 80: 791–806. doi: 10.1016/j.neuron.2013.10.047
|
[19] | Vidal F, Grapperon J, Bonnet M, Hasbroucq T (2003) The nature of unilateral motor commands in between-hand choice tasks as revealed by surface laplacian estimation. Psychophysiology 40: 796–805. doi: 10.1111/1469-8986.00080
|
[20] | Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review 114: 376–397. doi: 10.1037/0033-295x.114.2.376
|
[21] | Lo CC, Wang XJ (2006) Cortico-basal ganglia circuit mechanism for a decision threshold in reaction time tasks. Nature Neuroscience 9: 956–963. doi: 10.1038/nn1722
|
[22] | Harth EM, Csermely TJ, Beek B, Lindsay RD (1970) Brain functions and neural dynamics. Journal of Theoretical Biology 26: 93–120. doi: 10.1016/s0022-5193(70)80035-2
|
[23] | Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal 12: 1–24. doi: 10.1016/s0006-3495(72)86068-5
|
[24] | Usher M, McClelland JL (2001) The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review 108: 550–592. doi: 10.1037//0033-295x.108.3.550
|
[25] | Kim JN, Shadlen MN (1999) Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nature Neuroscience 2: 176–185.
|
[26] | Heekeren HR, Marrett S, Ruff DA, Bandettini PA, Ungerleider LG (2006) Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proc Nat Acad Sci, USA 103: 10023–10028. doi: 10.1073/pnas.0603949103
|
[27] | Cohen JY, Heitz RP, Woodman GF, Schall JD (2009) Neural basis of the set-size effect in frontal eye field: Timing of attention during visual search. Journal of Neurophysiology 101: 1699–1704. doi: 10.1152/jn.00035.2009
|
[28] | Purcell BA, Heitz RP, Cohen JY, Schall JD, Logan GD, et al. (2010) Neurally constrained modeling of perceptual decision making. Psychological Review 117: 1113–1143. doi: 10.1037/a0020311
|
[29] | Ding L, Gold JI (2010) Caudate encodes multiple computations for perceptual decisions. Journal of Neuroscience 30: 15747–15759. doi: 10.1523/jneurosci.2894-10.2010
|
[30] | Horwitz GD, Newsome WT (2001) Target selection for saccadic eye movements: Prelude activity in the superior colliculus during a direction-discrimination task. Journal of Neurophysiology 86: 2543–2558.
|
[31] | Bogacz R, Brown E, Moehlis J, Holmes P, Cohen JD (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced choice tasks. Psychological Review 113: 700–765. doi: 10.1037/0033-295x.113.4.700
|
[32] | Simen P, Cohen JD, Holmes P (2006) Rapid decision threshold modulation by reward rate in a neural network. Neural Networks 19: 1013–1026. doi: 10.1016/j.neunet.2006.05.038
|
[33] | Spencer KM, Coles MGH (1999) The lateralized readiness potential: Relationship between human data and response activation in a connectionist model. Psychophysiology 36: 364–370. doi: 10.1017/s0048577299970749
|
[34] | Leuthold H (2003) Programming of expected and unexpected movements: effects on the onset of the lateralized readiness potential. Acta Psychologica 114: 83–100. doi: 10.1016/s0001-6918(03)00051-9
|
[35] | Rinkenauer G, Osman A, Ulrich R, Müller-Gethmann H, Mattes S (2004) On the locus of speedaccuracy trade-off in reaction time: Inferences from the lateralized readiness potential. Journal of Experimental Psychology: General 133: 261–282.
|
[36] | Luck SJ (2005) An introduction to the event-related potential technique. MIT Press.
|
[37] | VandeKerckhove JA, Tuerlinckx F (2007) Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review 14: 1011–1026. doi: 10.3758/bf03193087
|
[38] | VandeKerckhove JA, Tuerlinckx F (2008) Diffusion model analysis with MATLAB:A DMAT primer. Behavior Research Methods 40: 61–72. doi: 10.3758/brm.40.1.61
|
[39] | Balci F, Simen PA, Niyogi R, Saxe A, Hughes J, et al. (2011) Acquisition of decision making criteria: reward rate ultimately beats accuracy. Attention, Perception and Psychophysics 73: 640–657. doi: 10.3758/s13414-010-0049-7
|
[40] | Simen P, Contreras D, Buck C, Hu P, Holmes P, et al. (2009) Reward-rate optimization in two-alternative decision making: empirical tests of theoretical predictions. Journal of Experimental Psychology: Human Perception and Performance 35: 1865–1897. doi: 10.1037/a0016926
|
[41] | Jentzsch I, Sommer W (2002) Functional localization and mechanisms of sequential effects in serial reaction time tasks. Perception & Psychophysics 64: 1169–1188. doi: 10.3758/bf03194765
|
[42] | Hsieh S, Yu YT (2003) Switching between simple response-sets: inferences from the lateralized readiness potential. Cognitive Brain Research 17: 228–237. doi: 10.1016/s0926-6410(03)00110-1
|
[43] | Sangais J, Roβ L, Sommer W (2004) Time pressure effects on information processing in overlapping tasks: evidence from the lateralized readiness potential. Acta Psychologica 117: 275–294. doi: 10.1016/j.actpsy.2004.07.001
|
[44] | van Schie HT, Mars RB, Coles MGH, Bekkering H (2004) Modulation of activity in medial frontal and motor cortices during error observation. Nature Neuroscience 7: 549–554. doi: 10.1038/nn1239
|
[45] | Miller J, Hackley SA (1992) Electrophysiological evidence for temporal overlap among contingent mental processes. Journal of Experimental Psychology: General 121: 195–209.
|
[46] | Gratton G, Coles MGH, Sirevaag EJ, Eriksen CW, Donchin E (1988) Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance 14: 331–344. doi: 10.1037//0096-1523.14.3.331
|
[47] | Miller J, Riehle A, Requin J (1992) Effects of preliminary perceptual output on neuronal activity of the primary motor cortex. Journal of Experimental Psychology: Human Perception and Performance 18: 1121–1138. doi: 10.1037/0096-1523.18.4.1121
|
[48] | Cohen JD, Dunbar K, McClelland JL (1990) On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychological Review 97: 332–361. doi: 10.1037//0033-295x.97.3.332
|
[49] | Kelly SP, O'Connell RG (2013) Internal and external inuences on the rate of sensory evidence accumulation in the human brain. Journal of Neuroscience 33: 19434–19441. doi: 10.1523/jneurosci.3355-13.2013
|
[50] | Pouget P, Logan GD, Palmeri TJ, Boucher L, Paré M, et al. (2011) Neural basis of adaptive response time adjustment duringsaccade countermanding. Journal of Neuroscience 31: 12604–12612. doi: 10.1523/jneurosci.1868-11.2011
|
[51] | Heitz RP, Schall JD (2012) Neural mechanisms of speed-accuracy trade-off. Neuron 76: 1–13. doi: 10.1016/j.neuron.2012.08.030
|
[52] | Rorie AE, Gao J, McClelland JL, Newsome WT (2010) Integration of sensory and reward information during perceptual decision-making in lateral intraparietal cortex (LIP) of the macaque monkey. PLoS One 5: e9308 doi:10.1371/journal.pone.0009308.
|
[53] | Gao J, Tortell R, McClelland JL (2011) Dynamic integration of reward and stimulus information in perceptual decision-making. PLoS ONE 6: e16749. doi: 10.1371/journal.pone.0016749
|
[54] | Hanks TD, Mazurek ME, Kiani R, Hopp E, Shadlen MN (2011) Elapsed decision time affects the weighting of prior probability in a perceptual decision task. Journal of Neuroscience 31: 6339–6352. doi: 10.1523/jneurosci.5613-10.2011
|
[55] | Jentzsch I, Sommer W (2002) The effect of intentional expectancy on mental processing: a chronopsychophysiological investigation. Acta Psychologica 111: 265–282. doi: 10.1016/s0001-6918(02)00053-7
|
[56] | Gao J, Wong-Lin KF, Holmes P, Simen P, Cohen JD (2009) Sequential effects in two-choice reaction time tasks: Decomposition and synthesis of mechanisms. Neural Computation 21: 2407–2436. doi: 10.1162/neco.2009.09-08-866
|
[57] | Goldfarb S, Wong-Lin K, Schwemmer M, Leonard N, Holmes P (2012) Can post-error dynamics explain sequential reaction time patterns? Frontiers in Psychology 3: 213. doi: 10.3389/fpsyg.2012.00213
|
[58] | T?llner T, Gramann K, Müller HJ, Kiss M, Eimer M (2008) Electrophysiological markers of visual dimension changes and response changes. Journal of Experimental Psychology: Human Perception and Performance 34: 531–542. doi: 10.1037/0096-1523.34.3.531
|
[59] | Scheibe C, Schubert R, Sommer W, Heekeren HR (2009) Electrophysiological evidence for the effect of prior probability on response preparation. Psychophysiology 46: 758–770. doi: 10.1111/j.1469-8986.2009.00825.x
|
[60] | Britten KH, Shadlen MN, Newsome WT, Movshon JA (1992) The analysis of visual motion: a comparison of neuronal and psychophysical performance. Journal of Neuroscience 12: 4745–4765.
|
[61] | Gold JI, Shadlen MN (2001) Neural computations that underlie decisions about sensory stimuli. Trends in Cognitive Science 5: 10–16. doi: 10.1016/s1364-6613(00)01567-9
|
[62] | Brainard DH (1997) The psychophysics toolbox. Spatial Vision 10: 443–446. doi: 10.1163/156856897x00357
|
[63] | Friederici AD, Wang Y, Herrmann CS, Maess B, Oertel U (2000) Localization of early syntactic processes in frontal and temporal cortical areas: a magnetoencephalographic study. Human Brain Mapping 11: 1–11. doi: 10.1002/1097-0193(200009)11:1<1::aid-hbm10>3.0.co;2-b
|
[64] | Hestvik A, Maxfield N, Schwartz RG, Shafer V (2007) Brain responses to filled gaps. Brain and Language 100: 301–316. doi: 10.1016/j.bandl.2006.07.007
|
[65] | de Jong R, Wierda M, Mulder G, Mulder LJ (1988) Use of partial stimulus information in response processing. Journal of Experimental Psychology: Human Perception and Performance 14: 682–692. doi: 10.1037/0096-1523.14.4.682
|
[66] | Kristeva R, Cheyne D, Deecke L (1991) Neuromagnetic fields accompanying unilateral and bilateral voluntary movements: Topography and analysis of cortical sources. Electroencephalography and Clinical Neurophysiology 81: 284–298. doi: 10.1016/0168-5597(91)90015-p
|
[67] | Coles MGH (1989) Modern mind-brain reading: psychophysiology, physiology, and cognition. Psychophysiology 26: 251–269. doi: 10.1111/j.1469-8986.1989.tb01916.x
|
[68] | Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods 134: 9–21. doi: 10.1016/j.jneumeth.2003.10.009
|
[69] | Schwarzenau P, Falkenstein M, Hoormann J, Hohnsbein J (1998) A new method for the estimation of the onset of the lateralized readiness potential (LRP). Behavior Research Methods, Instruments & Computers 30: 100–117. doi: 10.3758/bf03209421
|
[70] | Mordkoff JT, Gianaros PJ (2000) Detecting the onset of the lateralized readiness potential: A comparison of available methods and procedures. Psychophysiology 37: 347–360. doi: 10.1111/1469-8986.3730347
|
[71] | Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S (2010) The neural basis of the speedaccuracy trade-off. Trends in Cognitive Science 33: 10–16. doi: 10.1016/j.tins.2009.09.002
|