[1] | Bangerth F (2000) Abscission and thinning of young fruit and their regulation by plant hormones and bioregulators. Plant Growth Regul 31: 43–59.
|
[2] | Jarvis MC, Briggs SPH, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26: 977–989. doi: 10.1046/j.1365-3040.2003.01034.x
|
[3] | Dal Cin V, Barbaro E, Danesin M, Murayama H, Velasco R, et al. (2009) Fruitlet abscission: a cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh). Gene 442: 26–36. doi: 10.1016/j.gene.2009.04.009
|
[4] | Untiedt R, Blanke M (2001) Effects of fruit thinning agents on apple tree canopy photosynthesis and dark respiration. Plant Growth Regul 35: 1–9.
|
[5] | Abbott DL (1960) The bourse shoots as a factor in the growth of apple fruits. Ann Appl Biol 48: 434–438. doi: 10.1111/j.1744-7348.1960.tb03546.x
|
[6] | Luckwill LC (1970) The control of growth and fruitfulness of apple trees. p 237–254 In: Physiology of Tree Crops, LC Luckwill and CV Cutting (Eds) Academic Press, London.
|
[7] | Greene DW, Autio WR, Erf JA, Mao ZY (1992) Mode of action of benzyladenine when used as a chemical thinner on apples. J Am Soc Hortic Sci 117: 775–779.
|
[8] | Botton A, Eccher G, Forcato C, Ferrarini A, Begheldo M, et al. (2011) Signaling pathways mediating the induction of apple fruitlet abscission. Plant Phys 155: 185–208. doi: 10.1104/pp.110.165779
|
[9] | Berüter J, Droz P (1991) Studies on locating the signal for fruit abscission in the apple tree. Sci Hort 46: 201–214. doi: 10.1016/0304-4238(91)90043-x
|
[10] | Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, et al. (2011) Transcriptomics of shading-induced and NAA induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol 11: 138. doi: 10.1186/1471-2229-11-138
|
[11] | Eccher G, Botton A, Dimauro M, Boschetti A, Ruperti B, et al. (2013) Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. Plant Phys 161: 1952–1969. doi: 10.1104/pp.112.208470
|
[12] | Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2008) Ethylene-induced differential gene expression during abscission of citrus leaves. J Exp Bot 59: 2717–2733. doi: 10.1093/jxb/ern138
|
[13] | Agustí J, Merelo P, Cercós M, Tadeo FR, Talón M (2009) Comparative transcriptional survey between laser-microdissected cells from laminar abscission zone and petiolar cortical tissue during ethylene-promoted abscission in citrus leaves. BMC Plant Biol 9: 127. doi: 10.1186/1471-2229-9-127
|
[14] | Cai S, Lashbrook CC (2008) Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Phys 146: 1305–1321. doi: 10.1104/pp.107.110908
|
[15] | Roberts JA, Gonzalez-Carranza ZH (2009) Pectinase function in abscission. Stewart Postharvest Rev 5: 1–4. doi: 10.2212/spr.2009.1.2
|
[16] | Monselise S, Goldschmidt E (1982) Alternate bearing in fruit trees. Hort Rev 4, 128–173.
|
[17] | Williams MW (1979) Chemical thinning of apples. Hort Rev 1: 270–300. doi: 10.1002/9781118060742.ch7
|
[18] | Miller SS (1988) Plant bioregulators in apple and pear culture. Hort Rev 10: 309–401. doi: 10.1002/9781118060834.ch9
|
[19] | Denis FG (2000) The history of fruit thinning. Plant Growth Regul 31: 1–16.
|
[20] | Lespinasse Y (1992) Le pommier. Amémioration des espèces végétales cultivées, objectifs et critères de sélection. A. Gallais and H. Bannerot, Paris, 579–594.
|
[21] | Lauri PE, Terouanne E, Lespinasse JM, Regnard JL, Kelner JJ (1995) Genotypic differences in the axillary bud growth and fruiting pattern of apple fruiting branches over several years - An approach to regulation of fruit bearing. Sci Hort 64: 265–281. doi: 10.1016/0304-4238(95)00836-5
|
[22] | Lauri PE, Terouanne E, Lespinasse JM (1997) Relationship between the early development of apple fruiting branches and the regularity of bearing - An approach to the strategies of various cultivars. J Hort Sci 72: 519–530.
|
[23] | Westwood MN (1967) Cell size, cell number, and fruit density of apples as related to fruit size, position in cluster and thinning method. Proc Amer Soc Hort Sci 91: 51–62.
|
[24] | Luckwill LC (1969) The control of growth and fruitfulness of apple trees. p123–153. In: LC Luckwill and CV Cutting (eds) Physiology of tree crops Academic, New York.
|
[25] | Looney NE, Lane WD (1984) Spur-type growth mutants of McIntosh apple: a review of their genetics, physiology and field performance. Acta Hort 146: 31–46.
|
[26] | Lauri PE, Trottier C (2004) Patterns of size and fate relationships of contiguous organs in the apple (Malus domestica) crown. New Phytol 163: 533–546. doi: 10.1111/j.1469-8137.2004.01136.x
|
[27] | Sun L, Bukovac MJ, Forsline PL, van Nocker S (2009) Natural variation in fruit abscission-related traits in apple (Malus). Euphytica 165: 55–67. doi: 10.1007/s10681-008-9754-x
|
[28] | Lespinasse JM (1977) La conduite du pommier. Types de fructification et incidence sur la conduite de l’arbre. Paris: INVUFLEC.
|
[29] | Costes E, Sinoquet H, Kelner JJ, Godin C (2003) Exploring within- tree architectural development of two apple tree cultivars over 6 years. Ann Bot 91: 91–104.
|
[30] | R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Available: http://www.r-project.org/Accessed 2013 Sep 1.
|
[31] | Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2009) mixed models for S language environments. ASReml-R reference manual. Training Series QE02001. Queensland Department of Primary Industries and Fisheries. 160p.
|
[32] | Gallais A (1989) Théorie de la sélection en amélioration des plantes. In: Masson (ed), Paris, 45–103.
|
[33] | Celton J-M, Martinez S, Jammes M-J, Bechti A, Salvi S, et al. (2011) Deciphering the genetic determinism of bud phenology in apple progenies: a new insight in chilling and heating requirement effects on flowering dates and positional candidate genes. New Phytol 192: 378–392. doi: 10.1111/j.1469-8137.2011.03823.x
|
[34] | Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, et al. (2002) Development and characterisation of 140 new microsatellites in apple (Malus×domestica Borkh.). Molecular Breed 10: 217–241. doi: 10.1023/a:1020525906332
|
[35] | Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, et al. (2006) Microsatellite markers spanning the apple (Malus×domestica Borkh.) genome. Tree Genetics and Genomes 2: 202–224. doi: 10.1007/s11295-006-0045-1
|
[36] | Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro C, et al. (2010) The genome of the domesticated apple (Malus×domestica Borkh.). Nature Gen 42: 833–839. doi: 10.1038/ng.654
|
[37] | Van Ooijen JW (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma BV: Wageningen, Netherlands.
|
[38] | Voorrips RE (2001) MapChart version 2.0: windows software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen, The Netherlands.
|
[39] | Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39: W155–W159. doi: 10.1093/nar/gkr319
|
[40] | Lakso AN (2008) Early fruit growth and drop - the role of carbon balance in the apple tree. Acta Hort 903: 733–742.
|
[41] | Tustin DS, Dayatilake GA, Breen KC, Oliver MJ (2012) Fruit Set Responses to Changes in Floral Bud Load - a New Concept for Crop Load Regulation. Acta Hort 932: 195–202.
|
[42] | Wu BH, Ben Mimoun M, Genard M, Lescourret F, Besset J, et al. (2005) Peach fruit growth in relation to the leaf-to-fruit ratio, early fruit size and fruit position. J Hortic Sci Biotechno 80: 340–345.
|
[43] | Wünsche JN, Palmer JW, Greer DH (2000) Effects of crop load on fruiting and gas-exchange characteristics of ‘Braeburn’/M.26 apple trees at full canopy. J Am Soc Hortic Sci 125: 93–99.
|
[44] | Guitton G, Kelner J-J, Velasco R, Gardiner SE, Chagné D, et al. (2012) Genetic control of biennial bearing in apple. J Exp Bot 63: 131–149. doi: 10.1093/jxb/err261
|
[45] | Durand J-B, Guitton B, Peyhardi J, Holtz Y, Guédon Y, et al. (2013) New insights for estimating the genetic value of segregating apple progenies for irregular bearing during the first years of tree production. J Exp Bot 64: 5099–5113. doi: 10.1093/jxb/ert297
|
[46] | Paul S, Saha KK (2007) The generalized linear model and extensions: a review and some biological and environmental applications. Environmetrics 18: 421–443. doi: 10.1002/env.849
|
[47] | Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Molecular Breed 17: 329–339. doi: 10.1007/s11032-006-9004-7
|
[48] | Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus×domestica Borkh.). Plant Mol Biol 52: 511–526. doi: 10.1023/a:1024886500979
|
[49] | Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142: 343–351. doi: 10.1104/pp.106.083279
|
[50] | Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantative traits for growth and development in juvenile apple trees. Theor Appl Genet 96: 1027–1035. doi: 10.1007/s001220050835
|
[51] | Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus×domestica Borkh.) by QTL analysis of growth traits. Molecular Breed 19: 193–208. doi: 10.1007/s11032-006-9022-5
|
[52] | Segura V, Denance C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50: 159–171. doi: 10.1139/g07-002
|
[53] | Segura V, Cilas C, Costes E (2008) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: mixed linear modelling of repeated spatial and temporal measures. New Phytol 178: 302–314. doi: 10.1111/j.1469-8137.2007.02374.x
|
[54] | Eichler EE, Flint J, Gibson G, Kong A, Leal SM, et al. (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet. 2010 June 11(6): 446–450. doi: 10.1038/nrg2809
|
[55] | Makowsky R, Pajewski NM, Klimentidis YC, Vazquez AI, Duarte CW, et al. (2011) Beyond Missing Heritability: Prediction of Complex Traits. Plos Genetics 7 (4): e1002051. doi: 10.1371/journal.pgen.1002051
|
[56] | Segura V, Durel CE, Costes E (2009) Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genetics and Genomes 5: 165–179. doi: 10.1007/s11295-008-0181-x
|
[57] | Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, et al. (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97: 60–73. doi: 10.1007/s001220050867
|
[58] | Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg E, et al. (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94: 370–379. doi: 10.1094/phyto.2004.94.4.370
|
[59] | van Dyk MM, Soeker MK, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of vegetative budbreak in apple (Malus x domestica Borkh.). Tree Genetics and Genomes 6: 489–502. doi: 10.1007/s11295-009-0266-1
|
[60] | Ji HS, Chu SH, Jiang WZ, Cho YI, Hahn JH, et al. (2006) Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics 173: 995–1005. doi: 10.1534/genetics.105.054031
|
[61] | Zheng XY, Wolff DW, Crosby KM (2002) Genetics of ethylene biosynthesis and restriction fragment length polymorphisms (RFLPs) of ACC oxidase and synthase genes in melon (Cucumis melo L.). Theor Appl Genet 105: 397–403. doi: 10.1007/s00122-002-0880-x
|
[62] | Ireland HS, Yao J-L, Tomes S, Sutherland PW, Nieuwenhuizen N, et al. (2013) Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. Plant J 73: 1044–1056. doi: 10.1111/tpj.12094
|
[63] | Alonso-Cantabrana H, Ripoll JJ, Ochando I, Vera A, Ferrandiz C, et al. (2007) Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development 134: 2663–2671. doi: 10.1242/dev.02864
|
[64] | Estornell LH, Agusti J, Merelo P, Talón M, Tadeo FR (2013) Elucidating mechanisms underlying organ abscission. Plant Science 199–200: 48–60. doi: 10.1016/j.plantsci.2012.10.008
|
[65] | Pourtau N, Jennings R, Pelzer E, Pallas J, Wingler A (2006) Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis. Planta 224: 556–568. doi: 10.1007/s00425-006-0243-y
|
[66] | Zhong R, McCarthy RL, Lee C, Ye ZH (2011) Dissection of the Transcriptional Program Regulating Secondary Wall Biosynthesis during Wood Formation in Poplar. Plant Phys 157: 1452–1468. doi: 10.1104/pp.111.181354
|
[67] | Ohtani M, Nishikubo N, Xu B, Yamaguchi M, Mitsuda N, et al. (2011) A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J 67: 499–512. doi: 10.1111/j.1365-313x.2011.04614.x
|
[68] | Gould N, Thorpe MR, Pritchard J, Christeller JT, Williams LE, et al. (2012) AtSUC2 has a role for sucrose retrieval along the phloem pathway: Evidence from carbon-11 tracer studies. Plant Sci 188–189: 97–101. doi: 10.1016/j.plantsci.2011.12.018
|
[69] | Curaba J, Talbot M, Li Z, Helliwell C (2013) Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol 13.
|
[70] | Torres-Galea P, Hirtreiter B, Bolle C (2013) Two GRAS Proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, Function Cooperatively in Phytochrome A Signal Transduction. Plant Physiol 161: 291–304. doi: 10.1104/pp.112.206607
|
[71] | Moriya S, Okada K, Haji T, Yamamoto T, Abe K (2012) Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus×domestica Borkh.) linkage group 10. Plant Breed 131: 641–647. doi: 10.1111/j.1439-0523.2012.01985.x
|
[72] | Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, et al. (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Molecular Breed 31: 429–440. doi: 10.1007/s11032-012-9800-1
|
[73] | Krost C, Petersen R, Lokan S, Brauksiepe B, Braun P, et al. (2013) Evaluation of the hormonal state of columnar apple trees (Malus×domestica) based on high throughput gene expression studies. Plant Mol Biol 81: 211–220. doi: 10.1007/s11103-012-9992-0
|
[74] | Tapia-López R, García-Ponce B, Dubrovsky JG, Garay-Arroyo A, Pérez-Ruíz RV, et al. (2008) An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiol 146: 1182–1192. doi: 10.1104/pp.107.108647
|
[75] | Becker A, Theiben G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29: 464–489. doi: 10.1016/s1055-7903(03)00207-0
|
[76] | Wang X, Liu D, Li A, Sun X, Zhang R, et al. (2013) Transcriptome Analysis of Tomato Flower Pedicel Tissues Reveals Abscission Zone-Specific Modulation of Key Meristem Activity Genes. PLOS One 8: e55238. doi: 10.1371/journal.pone.0055238
|
[77] | Eulgem T, Somssich I (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10: 366–371. doi: 10.1016/j.pbi.2007.04.020
|
[78] | Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Phys 135: 2330–2347. doi: 10.1104/pp.104.044362
|
[79] | Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev of Plant Biol 57: 675–709. doi: 10.1146/annurev.arplant.57.032905.105441
|
[80] | Brown DM, Zeef LAH, Ellis JG, Goodacre R, Turner SR (2005) Identification of Novel Genes in Arabidopsis Involved in Secondary Cell Wall Formation Using Expression Profiling and Reverse Genetics. The Plant Cell 17: 2281–2295. doi: 10.1105/tpc.105.031542
|