全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Deregulation of COMMD1 Is Associated with Poor Prognosis in Diffuse Large B-cell Lymphoma

DOI: 10.1371/journal.pone.0091031

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Despite improved survival for the patients with diffuse large B-cell lymphoma (DLBCL), the prognosis after relapse is poor. The aim was to identify molecular events that contribute to relapse and treatment resistance in DLBCL. Methods We analysed 51 prospectively collected pretreatment tumour samples from clinically high risk patients treated in a Nordic phase II study with dose-dense chemoimmunotherapy and central nervous system prophylaxis with high resolution array comparative genomic hybridization (aCGH) and gene expression microarrays. Major finding was validated at the protein level immunohistochemically in a trial specific tissue microarray series of 70, and in an independent validation series of 146 patients. Results We identified 31 genes whose expression changes were strongly associated with copy number aberrations. In addition, gains of chromosomes 2p15 and 18q12.2 were associated with unfavourable survival. The 2p15 aberration harboured COMMD1 gene, whose expression had a significant adverse prognostic impact on survival. Immunohistochemical analysis of COMMD1 expression in two series confirmed the association of COMMD1 expression with poor prognosis. Conclusion COMMD1 is a potential novel prognostic factor in DLBCLs. The results highlight the value of integrated comprehensive analysis to identify prognostic markers and genetic driver events not previously implicated in DLBCL. Trial Registration ClinicalTrials.gov NCT01502982

References

[1]  Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, et al. (2002) CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 346: 235–242. doi: 10.1056/nejmoa011795
[2]  Habermann TM, Weller EA, Morrison VA, Gascoyne RD, Cassileth PA, et al. (2006) Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol 24: 3121–3127. doi: 10.1200/jco.2005.05.1003
[3]  Pfreundschuh M, Schubert J, Ziepert M, Schmits R, Mohren M, et al. (2008) Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol 9: 105–116. doi: 10.1016/s1470-2045(08)70002-0
[4]  Pfreundschuh M, Trumper L, Kloess M, Schmits R, Feller AC, et al. (2004) Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of young patients with good-prognosis (normal LDH) aggressive lymphomas: results of the NHL-B1 trial of the DSHNHL. Blood 104: 626–633. doi: 10.1182/blood-2003-06-2094
[5]  Pfreundschuh M, Trumper L, Osterborg A, Pettengell R, Trneny M, et al. (2006) CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol 7: 379–391. doi: 10.1016/s1470-2045(06)70664-7
[6]  Lenz G, Staudt LM (2010) Aggressive lymphomas. N Engl J Med 362: 1417–1429. doi: 10.1056/nejmra0807082
[7]  Shaffer AL 3rd, Young RM, Staudt LM (2012) Pathogenesis of human B cell lymphomas. Annu Rev Immunol 30: 565–610. doi: 10.1146/annurev-immunol-020711-075027
[8]  Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403: 503–511. doi: 10.1038/35000501
[9]  Lenz G, Wright G, Dave SS, Xiao W, Powell J, et al. (2008) Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 359: 2313–2323. doi: 10.1056/nejmoa0802885
[10]  Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937–1947. doi: 10.1056/nejmoa012914
[11]  Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, et al. (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198: 851–862. doi: 10.1084/jem.20031074
[12]  Huang JZ, Sanger WG, Greiner TC, Staudt LM, Weisenburger DD, et al. (2002) The t(14;18) defines a unique subset of diffuse large B-cell lymphoma with a germinal center B-cell gene expression profile. Blood 99: 2285–2290. doi: 10.1182/blood.v99.7.2285
[13]  Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194: 1861–1874. doi: 10.1084/jem.194.12.1861
[14]  Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, et al. (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A 109: 3879–3884. doi: 10.1073/pnas.1121343109
[15]  Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, et al. (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476: 298–303. doi: 10.1038/nature10351
[16]  Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, et al. (2013) Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122: 1256–1265. doi: 10.1182/blood-2013-02-483727
[17]  Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, et al. (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43: 830–837. doi: 10.1038/ng.892
[18]  Holte H, Leppa S, Bjorkholm M, Fluge O, Jyrkkio S, et al. (2013) Dose-densified chemoimmunotherapy followed by systemic central nervous system prophylaxis for younger high-risk diffuse large B-cell/follicular grade 3 lymphoma patients: results of a phase II Nordic Lymphoma Group study. Ann Oncol 24: 1385–1392. doi: 10.1093/annonc/mds621
[19]  Swerdlow SH, Campo E, Harris NL, Jaffe E, Pileri A, et al.. (2008) WHO Classification of tumours of hematopoietic and lymphoid tissues. Lyon: IARCH Press.
[20]  Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, et al. (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 100: 9991–9996. doi: 10.1073/pnas.1732008100
[21]  Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Delabie J, et al. (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103: 275–282. doi: 10.1182/blood-2003-05-1545
[22]  Ovaska K, Laakso M, Haapa-Paananen S, Louhimo R, Chen P, et al. (2010) Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme. Genome Med 2: 65. doi: 10.1186/gm186
[23]  Olshen AB, Venkatraman ES, Lucito R, Wigler M (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 5: 557–572. doi: 10.1093/biostatistics/kxh008
[24]  Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, et al. (2004) Detection of large-scale variation in the human genome. Nat Genet 36: 949–951. doi: 10.1038/ng1416
[25]  Chen P, Lepikhova T, Hu Y, Monni O, Hautaniemi S (2011) Comprehensive exon array data processing method for quantitative analysis of alternative spliced variants. Nucleic Acids Res 39: e123. doi: 10.1093/nar/gkr513
[26]  Hyman E, Kauraniemi P, Hautaniemi S, Wolf M, Mousses S, et al. (2002) Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62: 6240–6245.
[27]  Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, et al. (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105: 13520–13525. doi: 10.1073/pnas.0804295105
[28]  Monti S, Chapuy B, Takeyama K, Rodig SJ, Hao Y, et al. (2012) Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 22: 359–372. doi: 10.1016/j.ccr.2012.07.014
[29]  Tagawa H, Suguro M, Tsuzuki S, Matsuo K, Karnan S, et al. (2005) Comparison of genome profiles for identification of distinct subgroups of diffuse large B-cell lymphoma. Blood 106: 1770–1777. doi: 10.1182/blood-2005-02-0542
[30]  Takeuchi I, Tagawa H, Tsujikawa A, Nakagawa M, Katayama-Suguro M, et al. (2009) The potential of copy number gains and losses, detected by array-based comparative genomic hybridization, for computational differential diagnosis of B-cell lymphomas and genetic regions involved in lymphomagenesis. Haematologica 94: 61–69. doi: 10.3324/haematol.12986
[31]  Bea S, Zettl A, Wright G, Salaverria I, Jehn P, et al. (2005) Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene-expression-based survival prediction. Blood 106: 3183–3190. doi: 10.1182/blood-2005-04-1399
[32]  Kreisel F, Kulkarni S, Kerns RT, Hassan A, Deshmukh H, et al. (2011) High resolution array comparative genomic hybridization identifies copy number alterations in diffuse large B-cell lymphoma that predict response to immuno-chemotherapy. Cancer Genet 204: 129–137. doi: 10.1016/j.cancergen.2010.12.010
[33]  Jardin F, Jais JP, Molina TJ, Parmentier F, Picquenot JM, et al. (2010) Diffuse large B-cell lymphomas with CDKN2A deletion have a distinct gene expression signature and a poor prognosis under R-CHOP treatment: a GELA study. Blood 116: 1092–1104. doi: 10.1182/blood-2009-10-247122
[34]  Robledo C, Garcia JL, Caballero D, Conde E, Arranz R, et al. (2009) Array comparative genomic hybridization identifies genetic regions associated with outcome in aggressive diffuse large B-cell lymphomas. Cancer 115: 3728–3737. doi: 10.1002/cncr.24430
[35]  Fukuhara N, Tagawa H, Kameoka Y, Kasugai Y, Karnan S, et al. (2006) Characterization of target genes at the 2p15–16 amplicon in diffuse large B-cell lymphoma. Cancer Sci 97: 499–504. doi: 10.1111/j.1349-7006.2006.00209.x
[36]  Houldsworth J, Olshen AB, Cattoretti G, Donnelly GB, Teruya-Feldstein J, et al. (2004) Relationship between REL amplification, REL function, and clinical and biologic features in diffuse large B-cell lymphomas. Blood 103: 1862–1868. doi: 10.1182/blood-2003-04-1359
[37]  Maine GN, Burstein E (2007) COMMD proteins: COMMing to the scene. Cell Mol Life Sci 64: 1997–2005. doi: 10.1007/s00018-007-7078-y
[38]  Maine GN, Burstein E (2007) COMMD proteins and the control of the NF kappa B pathway. Cell Cycle 6: 672–676. doi: 10.4161/cc.6.6.3989
[39]  van de Sluis B, Mao X, Zhai Y, Groot AJ, Vermeulen JF, et al. (2010) COMMD1 disrupts HIF-1alpha/beta dimerization and inhibits human tumor cell invasion. J Clin Invest 120: 2119–2130. doi: 10.1172/jci40583
[40]  Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, et al. (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci U S A 101: 9309–9314. doi: 10.1073/pnas.0401994101
[41]  Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A 98: 15149–15154. doi: 10.1073/pnas.211566398
[42]  Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 8: 68–74. doi: 10.1038/nm0102-68
[43]  Drevillon L, Tanguy G, Hinzpeter A, Arous N, de Becdelievre A, et al. (2011) COMMD1-mediated ubiquitination regulates CFTR trafficking. PLoS One 6: e18334. doi: 10.1371/journal.pone.0018334
[44]  Thoms HC, Loveridge CJ, Simpson J, Clipson A, Reinhardt K, et al. (2010) Nucleolar targeting of RelA(p65) is regulated by COMMD1-dependent ubiquitination. Cancer Res 70: 139–149. doi: 10.1158/0008-5472.can-09-1397
[45]  Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342. doi: 10.1038/nature10098
[46]  Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13: 227–232. doi: 10.1038/nrg3185
[47]  Maine GN, Mao X, Muller PA, Komarck CM, Klomp LW, et al. (2009) COMMD1 expression is controlled by critical residues that determine XIAP binding. Biochem J 417: 601–609. doi: 10.1042/bj20080854

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133