全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Histaminergic Modulation of Cholinergic Release from the Nucleus Basalis Magnocellularis into Insular Cortex during Taste Aversive Memory Formation

DOI: 10.1371/journal.pone.0091120

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ability of acetylcholine (ACh) to alter specific functional properties of the cortex endows the cholinergic system with an important modulatory role in memory formation. For example, an increase in ACh release occurs during novel stimulus processing, indicating that ACh activity is critical during early stages of memory processing. During novel taste presentation, there is an increase in ACh release in the insular cortex (IC), a major structure for taste memory recognition. There is extensive evidence implicating the cholinergic efferents of the nucleus basalis magnocellularis (NBM) in cortical activity changes during learning processes, and new evidence suggests that the histaminergic system may interact with the cholinergic system in important ways. However, there is little information as to whether changes in cholinergic activity in the IC are modulated during taste memory formation. Therefore, in the present study, we evaluated the influence of two histamine receptor subtypes, H1 in the NBM and H3 in the IC, on ACh release in the IC during conditioned taste aversion (CTA). Injection of the H3 receptor agonist R-α-methylhistamine (RAMH) into the IC or of the H1 receptor antagonist pyrilamine into the NBM during CTA training impaired subsequent CTA memory, and simultaneously resulted in a reduction of ACh release in the IC. This study demonstrated that basal and cortical cholinergic pathways are finely tuned by histaminergic activity during CTA, since dual actions of histamine receptor subtypes on ACh modulation release each have a significant impact during taste memory formation.

References

[1]  McGaugh JL, Cahill L (1997) Interaction of neuromodulatory systems in modulating memory storage. Behav Brain Res 83: 31–38. doi: 10.1016/s0166-4328(97)86042-1
[2]  Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16: 710–715. doi: 10.1016/j.conb.2006.09.002
[3]  Robinson L, Platt B, Riedel G (2011) Involvement of the cholinergic system in conditioning and perceptual memory. Behav Brain Res 221: 443–465. doi: 10.1016/j.bbr.2011.01.055
[4]  Weinberger NM, Bakin JS (1998) Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiol Neurootol 3: 145–167. doi: 10.1159/000013787
[5]  Miranda MI, Bermudez-Rattoni F (1999) Reversible inactivation of the nucleus basalis magnocellularis induces disruption of cortical acetylcholine release and acquisition, but not retrieval, of aversive memories. Proc Natl Acad Sci U S A 96: 6478–6482. doi: 10.1073/pnas.96.11.6478
[6]  Cecchi M, Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2001) Cortical acetylcholine release elicited by stimulation of histamine H1 receptors in the nucleus basalis magnocellularis: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 13: 68–78. doi: 10.1046/j.1460-9568.2001.01361.x
[7]  Montero-Pastor A, Vale-Martinez A, Guillazo-Blanch G, Nadal-Alemany R, Marti-Nicolovius M, et al. (2001) Nucleus basalis magnocellularis electrical stimulation facilitates two-way active avoidance retention, in rats. Brain Res 900: 337–341. doi: 10.1016/s0006-8993(01)02325-3
[8]  Rokem A, Silver MA (2013) The benefits of cholinergic enhancement during perceptual learning are long-lasting. Front Comput Neurosci 7: 66. doi: 10.3389/fncom.2013.00066
[9]  de Souza Silva MA, Lenz B, Rotter A, Biermann T, Peters O, et al. (2013) Neurokinin3 receptor as a target to predict and improve learning and memory in the aged organism. Proc Natl Acad Sci U S A 110: 15097–15102. doi: 10.1073/pnas.1306884110
[10]  Hasselmo ME, McGaughy J (2004) High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res 145: 207–231. doi: 10.1016/s0079-6123(03)45015-2
[11]  Berman DE, Hazvi S, Neduva V, Dudai Y (2000) The role of identified neurotransmitter systems in the response of insular cortex to unfamiliar taste: activation of ERK1-2 and formation of a memory trace. J Neurosci 20: 7017–7023.
[12]  Miranda MI, Ferreira G, Ramirez-Lugo L, Bermudez-Rattoni F (2003) Role of cholinergic system on the construction of memories: taste memory encoding. Neurobiol Learn Mem 80: 211–222.
[13]  Miranda MI, Ramirez-Lugo L, Bermudez-Rattoni F (2000) Cortical cholinergic activity is related to the novelty of the stimulus. Brain Res 882: 230–235. doi: 10.1016/s0926-6410(00)00050-1
[14]  Gutierrez R, Rodriguez-Ortiz CJ, De La Cruz V, Nú?ez-Jaramillo L, Bermudez-Rattoni F (2003) Cholinergic dependence of taste memory formation: evidence of two distinct processes. Neurobiol Learn Mem 80: 323–331. doi: 10.1016/s1074-7427(03)00066-2
[15]  Clark EW, Bernstein IL (2009) Boosting cholinergic activity in gustatory cortex enhances the salience of a familiar conditioned stimulus in taste aversion learning. Behav Neurosci 123: 764–771. doi: 10.1037/a0016398
[16]  Hagan JJ, Salamone JD, Simpson J, Iversen SD, Morris RG (1988) Place navigation in rats is impaired by lesions of medial septum and diagonal band but not nucleus basalis magnocellularis. Behav Brain Res 27: 9–20. doi: 10.1016/0166-4328(88)90105-2
[17]  Rasmusson AM, Hauger RL, Morgan CA, Bremner JD, Charney DS, et al. (2000) Low baseline and yohimbine-stimulated plasma neuropeptide Y (NPY) levels in combat-related PTSD. Biol Psychiatry 47: 526–539. doi: 10.1016/s0006-3223(99)00185-7
[18]  Savage LM (2012) Sustaining high acetylcholine levels in the frontal cortex, but not retrosplenial cortex, recovers spatial memory performance in a rodent model of diencephalic amnesia. Behav Neurosci 126: 226–236. doi: 10.1037/a0027257
[19]  Douchamps V, Jeewajee A, Blundell P, Burgess N, Lever C (2013) Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine. J Neurosci 33: 8689–8704. doi: 10.1523/jneurosci.4483-12.2013
[20]  Bures J, Bermúdez-Rattoni F, Yamamoto T (1998) Conditioned Taste Aversion. Memory of a Special Kind; Publications OS, editor: Oxford University Press. 178 p.
[21]  Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36: 52–73. doi: 10.1038/npp.2010.104
[22]  Hasselmo ME, Barkai E (1995) Cholinergic modulation of activity-dependent synaptic plasticity in the piriform cortex and associative memory function in a network biophysical simulation. J Neurosci 15: 6592–6604.
[23]  Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3: 351–359. doi: 10.1016/s1364-6613(99)01365-0
[24]  Heys JG, Schultheiss NW, Shay CF, Tsuno Y, Hasselmo ME (2012) Effects of acetylcholine on neuronal properties in entorhinal cortex. Front Behav Neurosci 6: 32. doi: 10.3389/fnbeh.2012.00032
[25]  Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67: 1–27. doi: 10.1016/0166-4328(94)00113-t
[26]  Hasselmo ME (1999) Neuromodulation and the hippocampus: memory function and dysfunction in a network simulation. Prog Brain Res 121: 3–18. doi: 10.1016/s0079-6123(08)63064-2
[27]  Hasselmo ME, Hay J, Ilyn M, Gorchetchnikov A (2002) Neuromodulation, theta rhythm and rat spatial navigation. Neural Netw 15: 689–707. doi: 10.1016/s0893-6080(02)00057-6
[28]  Hasselmo ME, Schnell E (1994) Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci 14: 3898–3914.
[29]  Bacciottini L, Passani MB, Giovannelli L, Cangioli I, Mannaioni PF, et al. (2002) Endogenous histamine in the medial septum-diagonal band complex increases the release of acetylcholine from the hippocampus: a dual-probe microdialysis study in the freely moving rat. Eur J Neurosci 15: 1669–1680. doi: 10.1046/j.1460-9568.2002.02005.x
[30]  Blandina P, Giorgetti M, Bartolini L, Cecchi M, Timmerman H, et al. (1996) Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats. Br J Pharmacol 119: 1656–1664. doi: 10.1111/j.1476-5381.1996.tb16086.x
[31]  Giannoni P, Medhurst AD, Passani MB, Giovannini MG, Ballini C, et al. (2012) Regional differential effects of the novel histamine H3 receptor antagonist 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3?-benzazepin-7-yl)oxy]-N-methyl-3-pyridin?ecarboxamide hydrochloride (GSK189254) on histamine release in the central nervous system of freely moving rats. J Pharmacol Exp Ther 332: 164–172. doi: 10.1124/jpet.109.158444
[32]  Munari L, Provensi G, Passani MB, Blandina P (2013) Selective brain region activation by histamine H receptor antagonist/inverse agonist ABT-239 enhances acetylcholine and histamine release and increases c-Fos expression. Neuropharmacology 70C: 131–140. doi: 10.1016/j.neuropharm.2013.01.021
[33]  Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci U S A 81: 2572–2576. doi: 10.1073/pnas.81.8.2572
[34]  Giannoni P, Passani MB, Nosi D, Chazot PL, Shenton FC, et al. (2009) Heterogeneity of histaminergic neurons in the tuberomammillary nucleus of the rat. Eur J Neurosci 29: 2363–2374. doi: 10.1111/j.1460-9568.2009.06765.x
[35]  de Almeida MA, Izquierdo I (1986) Memory facilitation by histamine. Arch Int Pharmacodyn Ther 283: 193–198.
[36]  de Almeida MA, Izquierdo I (1988) Intracerebroventricular histamine, but not 48/80, causes posttraining memory facilitation in the rat. Arch Int Pharmacodyn Ther 291: 202–207.
[37]  Benetti F, Baldi E, Bucherelli C, Blandina P, Passani MB (2012) Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation. Int J Neuropsychopharmacol 1–8. doi: 10.1017/s1461145712000181
[38]  Benetti F, da Silveira CK, da Silva WC, Cammarota M, Izquierdo I (2012) Histamine reverses a memory deficit induced in rats by early postnatal maternal deprivation. Neurobiol Learn Mem 97: 54–58. doi: 10.1016/j.nlm.2011.09.004
[39]  Esbenshade TA, Browman KE, Miller TR, Krueger KM, Komater-Roderwald V, et al. (2012) Pharmacological properties and procognitive effects of ABT-288, a potent and selective histamine H3 receptor antagonist. J Pharmacol Exp Ther 343: 233–245. doi: 10.1124/jpet.112.194126
[40]  Kohler CA, da Silva WC, Benetti F, Bonini JS (2012) Histaminergic mechanisms for modulation of memory systems. Neural Plast 2011: 328602. doi: 10.1155/2011/328602
[41]  Kruk M, Miszkiel J, McCreary AC, Przegalinski E, Filip M, et al. (2012) Effects of the histamine H(3) receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice. Pharmacol Rep 64: 1316–1325. doi: 10.1016/s1734-1140(12)70929-5
[42]  Benetti F, Baldi E, Bucherelli C, Blandina P, Passani MB (2013) Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation. Int J Neuropsychopharmacol 16: 575–582. doi: 10.1017/s1461145712000181
[43]  Benetti F, Izquierdo I (2013) Histamine infused into basolateral amygdala enhances memory consolidation of inhibitory avoidance. Int J Neuropsychopharmacol 1–7. doi: 10.1017/s1461145712001514
[44]  Brabant C, Charlier Y, Tirelli E (2013) The histamine H(3)-receptor inverse agonist Pitolisant improves fear memory in mice. Behav Brain Res 243C: 199–204. doi: 10.1016/j.bbr.2012.12.063
[45]  Puron-Sierra L, Sabath E, Nunez-Jaramillo L, Miranda MI (2010) Blockade of nucleus basalis magnocellularis or activation of insular cortex histamine receptors disrupts formation but not retrieval of aversive taste memory. Neurobiol Learn Mem 93: 216–220. doi: 10.1016/j.nlm.2009.10.001
[46]  Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates: Academic Press.
[47]  Miranda MI, Ferreira G, Ramirez-Lugo L, Bermudez-Rattoni F (2002) Glutamatergic activity in the amygdala signals visceral input during taste memory formation. Proc Natl Acad Sci U S A 99: 11417–11422. doi: 10.1073/pnas.182200499
[48]  Miranda MI, Quirarte GL, Rodriguez-Garcia G, McGaugh JL, Roozendaal B (2008) Glucocorticoids enhance taste aversion memory via actions in the insular cortex and basolateral amygdala. Learning & memory 15: 468–476. doi: 10.1101/lm.964708
[49]  Miranda MI, Bermudez-Rattoni F (1998) Acetylcholine determination of microdialysates of fetal neocortex grafts that induce recovery of learning. Brain Res Brain Res Protoc 2: 215–222. doi: 10.1016/s1385-299x(97)00046-9
[50]  Cecchi M, Giorgetti M, Bacciottini L, Giovannini MG, Blandina P (1998) Increase of acetylcholine release from cortex of freely moving rats by administration of histamine into the nucleus basalis magnocellularis. Inflamm Res 47 Suppl 1: S32–33. doi: 10.1007/s000110050254
[51]  Arrang JM, Drutel G, Schwartz JC (1995) Characterization of histamine H3 receptors regulating acetylcholine release in rat entorhinal cortex. Br J Pharmacol 114: 1518–1522. doi: 10.1111/j.1476-5381.1995.tb13379.x
[52]  Bacciottini L, Passani MB, Mannaioni PF, Blandina P (2001) Interactions between histaminergic and cholinergic systems in learning and memory. Behav Brain Res 124: 183–194. doi: 10.1016/s0166-4328(01)00230-3
[53]  Blandina P, Munari L, Provensi G, Passani MB (2012) Histamine neurons in the tuberomamillary nucleus: a whole center or distinct subpopulations? Front Syst Neurosci 6: 33. doi: 10.3389/fnsys.2012.00033
[54]  Cangioli I, Baldi E, Mannaioni PF, Bucherelli C, Blandina P, et al. (2002) Activation of histaminergic H3 receptors in the rat basolateral amygdala improves expression of fear memory and enhances acetylcholine release. Eur J Neurosci 16: 521–528. doi: 10.1046/j.1460-9568.2002.02092.x
[55]  Orsetti M, Casamenti F, Pepeu G (1996) Enhanced acetylcholine release in the hippocampus and cortex during acquisition of an operant behavior. Brain Res 724: 89–96. doi: 10.1016/0006-8993(96)00292-2
[56]  Fibiger HC, Damsma G, Day JC (1991) Behavioral pharmacology and biochemistry of central cholinergic neurotransmission. Adv Exp Med Biol 295: 399–414. doi: 10.1007/978-1-4757-0145-6_23
[57]  Weinberger NM, Bakin JS (1998) Research on auditory cortex plasticity. Science 280: 1174. doi: 10.1126/science.280.5367.1171e
[58]  Giovannini MG, Rakovska A, Benton RS, Pazzagli M, Bianchi L, et al. (2001) Effects of novelty and habituation on acetylcholine, GABA, and glutamate release from the frontal cortex and hippocampus of freely moving rats. Neuroscience 106: 43–53. doi: 10.1016/s0306-4522(01)00266-4
[59]  Lopez-Garcia JC, Fernandez-Ruiz J, Escobar ML, Bermudez-Rattoni F, Tapia R (1993) Effects of excitotoxic lesions of the nucleus basalis magnocellularis on conditioned taste aversion and inhibitory avoidance in the rat. Pharmacol Biochem Behav 45: 147–152. doi: 10.1016/0091-3057(93)90098-e
[60]  Naor C, Dudai Y (1996) Transient impairment of cholinergic function in the rat insular cortex disrupts the encoding of taste in conditioned taste aversion. Behav Brain Res 79: 61–67. doi: 10.1016/0166-4328(95)00262-6
[61]  Bartus RT, Dean RL, Pontecorvo MJ, Flicker C (1985) The cholinergic hypothesis: a historical overview, current perspective, and future directions. Ann N Y Acad Sci 444: 332–358. doi: 10.1111/j.1749-6632.1985.tb37600.x
[62]  Flicker C, Dean RL, Watkins DL, Fisher SK, Bartus RT (1983) Behavioral and neurochemical effects following neurotoxic lesions of a major cholinergic input to the cerebral cortex in the rat. Pharmacol Biochem Behav 18: 973–981. doi: 10.1016/s0091-3057(83)80023-9
[63]  Baldi E, Mariottini C, Bucherelli C (2008) Differential roles of the basolateral amygdala and nucleus basalis magnocellularis during post-reactivation contextual fear conditioning reconsolidation in rats. Neurobiol Learn Mem doi: 10.1016/j.nlm.2008.07.009
[64]  Power AE (2004) Muscarinic cholinergic contribution to memory consolidation: with attention to involvement of the basolateral amygdala. Curr Med Chem 11: 987–996. doi: 10.2174/0929867043455558
[65]  Anaclet C, Parmentier R, Ouk K, Guidon G, Buda C, et al. (2009) Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci 29: 14423–14438. doi: 10.1523/jneurosci.2604-09.2009
[66]  Lin JS, Sergeeva OA, Haas HL (2011) Histamine H3 receptors and sleep-wake regulation. J Pharmacol Exp Ther 336: 17–23. doi: 10.1124/jpet.110.170134
[67]  Raddatz R, Tao M, Hudkins RL (2010) Histamine H3 antagonists for treatment of cognitive deficits in CNS diseases. Curr Top Med Chem 10: 153–169. doi: 10.2174/156802610790411027
[68]  Kruk M, Miszkiel J, McCreary AC, Przegalinski E, Filip M, et al. (2012) Effects of the histamine H(3) receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice. Pharmacol Rep 64: 1316–1325. doi: 10.1016/s1734-1140(12)70929-5
[69]  Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28: 585–610. doi: 10.1016/0306-4522(89)90007-9
[70]  Privou C, Knoche A, Hasenohrl RU, Huston JP (1998) The H1- and H2-histamine blockers chlorpheniramine and ranitidine applied to the nucleus basalis magnocellularis region modulate anxiety and reinforcement related processes. Neuropharmacology 37: 1019–1032. doi: 10.1016/s0028-3908(98)00087-2
[71]  Privou C, Li JS, Hasenohrl RU, Huston JP (1999) Enhanced learning by posttrial injection of H1-but not H2-histaminergic antagonists into the nucleus basalis magnocellularis region. Neurobiol Learn Mem 71: 308–324. doi: 10.1006/nlme.1998.3885
[72]  Passani MB, Blandina P, Torrealba F (2011) The histamine H3 receptor and eating behavior. J Pharmacol Exp Ther 336: 24–29. doi: 10.1124/jpet.110.171306
[73]  Passani MB, Giannoni P, Bucherelli C, Baldi E, Blandina P (2007) Histamine in the brain: beyond sleep and memory. Biochem Pharmacol 73: 1113–1122. doi: 10.1016/j.bcp.2006.12.002
[74]  Khateb A, Fort P, Pegna A, Jones BE, Muhlethaler M (1995) Cholinergic nucleus basalis neurons are excited by histamine in vitro. Neuroscience 69: 495–506. doi: 10.1016/0306-4522(95)00264-j
[75]  Onodera K, Yamatodani A, Watanabe T, Wada H (1994) Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol 42: 685–702. doi: 10.1016/0301-0082(94)90017-5
[76]  Gianlorenco AC, Canto-de-Souza A, Mattioli R (2012) Microinjection of histamine into the cerebellar vermis impairs emotional memory consolidation in mice. Brain Res Bull 86: 134–138. doi: 10.1016/j.brainresbull.2011.05.014
[77]  Blandina P, Giorgetti M, Cecchi M, Leurs R, Timmerman H, et al. (1996) Histamine H3 receptor inhibition of K(+)-evoked release of acetylcholine from rat cortex in vivo. Inflamm Res 45 Suppl 1: S54–55. doi: 10.1111/j.1476-5381.1996.tb16086.x
[78]  Giovannini MG, Ceccarelli I, Molinari B, Cecchi M, Goldfarb J, et al. (1998) Serotonergic modulation of acetylcholine release from cortex of freely moving rats. J Pharmacol Exp Ther 285: 1219–1225.
[79]  Arrang JM, Drutel G, Garbarg M, Ruat M, Traiffort E, et al. (1995) Molecular and functional diversity of histamine receptor subtypes. Ann N Y Acad Sci 757: 314–323. doi: 10.1111/j.1749-6632.1995.tb17489.x
[80]  Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2000) Central histaminergic system and cognition. Neurosci Biobehav Rev 24: 107–113. doi: 10.1016/s0149-7634(99)00053-6
[81]  Giorgetti M, Bacciottini L, Bianchi L, Giovannini MG, Cecchi M, et al. (1997) GABAergic mechanism in histamine H3 receptor inhibition of K(+)-evoked release of acetylcholine from rat cortex in vivo. Inflamm Res 46 Suppl 1: S33–34. doi: 10.1007/s000110050044
[82]  Moron I, Ramirez-Lugo L, Ballesteros MA, Gutierrez R, Miranda MI, et al. (2002) Differential effects of bicuculline and muscimol microinjections into the nucleus basalis magnocellularis in taste and place aversive memory formation. Behav Brain Res 134: 425–431. doi: 10.1016/s0166-4328(02)00056-6
[83]  Dere E, Zlomuzica A, De Souza Silva MA, Ruocco LA, Sadile AG, et al. (2010) Neuronal histamine and the interplay of memory, reinforcement and emotions. Behav Brain Res 215: 209–220. doi: 10.1016/j.bbr.2009.12.045
[84]  Zlomuzica A, Ruocco LA, Sadile AG, Huston JP, Dere E (2009) Histamine H1 receptor knockout mice exhibit impaired spatial memory in the eight-arm radial maze. Br J Pharmacol 157: 86–91. doi: 10.1111/j.1476-5381.2009.00225.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133