[1] | Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92: 367–380. doi: 10.1016/s0092-8674(00)80929-0
|
[2] | Peters JM, Franke WW, Kleinschmidt JA (1994) Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem 269: 7709–7718.
|
[3] | Gorbea C, Taillandier D, Rechsteiner M (1999) Assembly of the regulatory complex of the 26S proteasome. Mol Biol Rep 26: 15–19. doi: 10.1023/a:1006957802028
|
[4] | Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65: 801–847. doi: 10.1146/annurev.bi.65.070196.004101
|
[5] | Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, et al. (2012) Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci U S A 109: 14870–14875. doi: 10.1073/pnas.1213333109
|
[6] | da Fonseca PC, He J, Morris EP (2012) Molecular model of the human 26S proteasome. Mol Cell 46: 54–66. doi: 10.1016/j.molcel.2012.03.026
|
[7] | Bhat KP, Turner JD, Myers SE, Cape AD, Ting JP, et al. (2008) The 19S proteasome ATPase Sug1 plays a critical role in regulating MHC class II transcription. Mol Immunol 45: 2214–2224. doi: 10.1016/j.molimm.2007.12.001
|
[8] | Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29 Suppl 13–9. doi: 10.1016/s0305-7372(03)00081-1
|
[9] | Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, et al. (2012) Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci U S A 109: 1380–1387. doi: 10.1073/pnas.1120559109
|
[10] | Smith DM, Chang SC, Park S, Finley D, Cheng Y, et al. (2007) Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol Cell 27: 731–744. doi: 10.1016/j.molcel.2007.06.033
|
[11] | Gonzalez F, Delahodde A, Kodadek T, Johnston SA (2002) Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296: 548–550. doi: 10.1126/science.1069490
|
[12] | Strickland E, Hakala K, Thomas PJ, DeMartino GN (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J Biol Chem 275: 5565–5572. doi: 10.1074/jbc.275.8.5565
|
[13] | Ferdous A, Kodadek T, Johnston SA (2002) A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41: 12798–12805. doi: 10.1021/bi020425t
|
[14] | Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4: 192–201. doi: 10.1038/nrm1049
|
[15] | Chaves S, Baskerville C, Yu V, Reed SI (2010) Cks1, Cdk1, and the 19S proteasome collaborate to regulate gene induction-dependent nucleosome eviction in yeast. Mol Cell Biol 30: 5284–5294. doi: 10.1128/mcb.00952-10
|
[16] | Ting JP, Trowsdale J (2002) Genetic control of MHC class II expression. Cell 109 Suppl: S21–33 doi: 10.1016/s0092-8674(02)00696-7
|
[17] | Boss JM (1997) Regulation of transcription of MHC class II genes. Curr Opin Immunol 9: 107–113. doi: 10.1016/s0952-7915(97)80166-5
|
[18] | Kaufman JF, Auffray C, Korman AJ, Shackelford DA, Strominger J (1984) The class II molecules of the human and murine major histocompatibility complex. Cell 36: 1–13. doi: 10.1016/0092-8674(84)90068-0
|
[19] | Reith W, Mach B (2001) The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol 19: 331–373. doi: 10.1146/annurev.immunol.19.1.331
|
[20] | Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, et al. (2005) MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 37: 486–494. doi: 10.1038/ng1544
|
[21] | Trowsdale J (2011) The MHC, disease and selection. Immunol Lett 137: 1–8. doi: 10.1016/j.imlet.2011.01.002
|
[22] | Garrido F, Ruiz-Cabello F (1991) MHC expression on human tumors–its relevance for local tumor growth and metastasis. Semin Cancer Biol 2: 3–10.
|
[23] | Guy K, Krajewski AS, Dewar AE (1986) Expression of MHC class II antigens in human B-cell leukaemia and non-Hodgkin's lymphoma. Br J Cancer 53: 161–173.
|
[24] | Benoist C, Mathis D (1990) Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Annu Rev Immunol 8: 681–715. doi: 10.1146/annurev.iy.08.040190.003341
|
[25] | Boss JM, Jensen PE (2003) Transcriptional regulation of the MHC class II antigen presentation pathway. Curr Opin Immunol 15: 105–111. doi: 10.1016/s0952-7915(02)00015-8
|
[26] | Pattenden SG, Klose R, Karaskov E, Bremner R (2002) Interferon-gamma-induced chromatin remodeling at the CIITA locus is BRG1 dependent. Embo J 21: 1978–1986. doi: 10.1093/emboj/21.8.1978
|
[27] | Piskurich JF, Gilbert CA, Ashley BD, Zhao M, Chen H, et al. (2006) Expression of the MHC class II transactivator (CIITA) type IV promoter in B lymphocytes and regulation by IFN-gamma. Mol Immunol 43: 519–528. doi: 10.1016/j.molimm.2005.05.005
|
[28] | Morris AC, Beresford GW, Mooney MR, Boss JM (2002) Kinetics of a gamma interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation. Mol Cell Biol 22: 4781–4791. doi: 10.1128/mcb.22.13.4781-4791.2002
|
[29] | Wright KL, Ting JP (2006) Epigenetic regulation of MHC-II and CIITA genes. Trends Immunol 27: 405–412. doi: 10.1016/j.it.2006.07.007
|
[30] | Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64: 435–459. doi: 10.1128/mmbr.64.2.435-459.2000
|
[31] | Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, et al. (2000) CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 14: 1156–1166.
|
[32] | Kanazawa S, Okamoto T, Peterlin BM (2000) Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 12: 61–70. doi: 10.1016/s1074-7613(00)80159-4
|
[33] | Mach B, Steimle V, Martinez-Soria E, Reith W (1996) Regulation of MHC class II genes: lessons from a disease. Annu Rev Immunol 14: 301–331. doi: 10.1146/annurev.immunol.14.1.301
|
[34] | Masternak K, Barras E, Zufferey M, Conrad B, Corthals G, et al. (1998) A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat Genet 20: 273–277.
|
[35] | Truax AD, Koues OI, Mentel MK, Greer SF (2010) The 19S ATPase S6a (S6'/TBP1) regulates the transcription initiation of class II transactivator. J Mol Biol 395: 254–269. doi: 10.1016/j.jmb.2009.10.035
|
[36] | Koues OI, Dudley RK, Mehta NT, Greer SF (2009) The 19S proteasome positively regulates histone methylation at cytokine inducible genes. Biochim Biophys Acta.
|
[37] | Koues OI, Dudley RK, Truax AD, Gerhardt D, Bhat KP, et al. (2008) Regulation of acetylation at the major histocompatibility complex class II proximal promoter by the 19S proteasomal ATPase Sug1. Mol Cell Biol 28: 5837–5850. doi: 10.1128/mcb.00535-08
|
[38] | Koues OI, Mehta NT, Truax AD, Dudley RK, Brooks JK, et al. (2010) Roles for common MLL/COMPASS subunits and the 19S proteasome in regulating CIITA pIV and MHC class II gene expression and promoter methylation. Epigenetics Chromatin 3: 5. doi: 10.1186/1756-8935-3-5
|
[39] | Rabl J, Smith DM, Yu Y, Chang SC, Goldberg AL, et al. (2008) Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell 30: 360–368. doi: 10.1016/j.molcel.2008.03.004
|
[40] | Richmond C, Gorbea C, Rechsteiner M (1997) Specific Interactions between ATPase Subunits of the 26 S Protease. J Biol Chem 272: 13403–13411. doi: 10.1074/jbc.272.20.13403
|
[41] | Li Q, Price JP, Byers SA, Cheng D, Peng J, et al. (2005) Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J Biol Chem 280: 28819–28826. doi: 10.1074/jbc.m502712200
|
[42] | Zhou Q, Chen D, Pierstorff E, Luo K (1998) Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages. EMBO J 17: 3681–3691. doi: 10.1093/emboj/17.13.3681
|
[43] | Ferdous A, Gonzalez F, Sun L, Kodadek T, Johnston SA (2001) The 19S regulatory particle of the proteasome is required for efficient transcription elongation by RNA polymerase II. Mol Cell 7: 981–991. doi: 10.1016/s1097-2765(01)00250-7
|
[44] | Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272: 9086–9092. doi: 10.1074/jbc.272.14.9086
|
[45] | Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14: 2452–2460. doi: 10.1101/gad.824700
|
[46] | Dahmus ME (1996) Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J Biol Chem 271: 19009–19012. doi: 10.1074/jbc.271.32.19009
|
[47] | Ahn SH, Kim M, Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell 13: 67–76. doi: 10.1016/s1097-2765(03)00492-1
|
[48] | Nechaev S, Adelman K (2011) Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation. Biochim Biophys Acta 1809: 34–45. doi: 10.1016/j.bbagrm.2010.11.001
|
[49] | Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128: 707–719. doi: 10.1016/j.cell.2007.01.015
|
[50] | Saha A, Wittmeyer J, Cairns BR (2006) Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7: 437–447. doi: 10.1038/nrm1945
|
[51] | Kettern N, Dreiseidler M, Tawo R, Hohfeld J (2010) Chaperone-assisted degradation: multiple paths to destruction. Biol Chem 391: 481–489. doi: 10.1515/bc.2010.058
|
[52] | Buratowski S (1994) The basics of basal transcription by RNA polymerase II. Cell 77: 1–3. doi: 10.1016/0092-8674(94)90226-7
|
[53] | Conaway RC, Conaway JW (1993) General initiation factors for RNA polymerase II. Annu Rev Biochem 62: 161–190. doi: 10.1146/annurev.bi.62.070193.001113
|
[54] | Roeder RG (1996) The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci 21: 327–335. doi: 10.1016/s0968-0004(96)10050-5
|
[55] | Sims RJ 3rd, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18: 2437–2468. doi: 10.1101/gad.1235904
|
[56] | Hager GL, McNally JG, Misteli T (2009) Transcription dynamics. Mol Cell 35: 741–753. doi: 10.1016/j.molcel.2009.09.005
|
[57] | Sledz P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, et al. (2013) Structure of the 26S proteasome with ATP-gammaS bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc Natl Acad Sci U S A 110: 7264–7269. doi: 10.1073/pnas.1305782110
|
[58] | Ezhkova E, Tansey WP (2004) Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol Cell 13: 435–442. doi: 10.1016/s1097-2765(04)00026-7
|
[59] | Lee D, Ezhkova E, Li B, Pattenden SG, Tansey WP, et al. (2005) The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123: 423–436. doi: 10.1016/j.cell.2005.08.015
|
[60] | Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608. doi: 10.1016/0092-8674(94)90221-6
|
[61] | Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416: 763–767. doi: 10.1038/416763a
|
[62] | Lassot I, Latreille D, Rousset E, Sourisseau M, Linares LK, et al. (2007) The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol Cell 25: 369–383. doi: 10.1016/j.molcel.2006.12.020
|
[63] | Nelbock P, Dillon PJ, Perkins A, Rosen CA (1990) A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 248: 1650–1653. doi: 10.1126/science.2194290
|
[64] | Ishizuka T, Satoh T, Monden T, Shibusawa N, Hashida T, et al. (2001) Human immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR. Mol Endocrinol 15: 1329–1343. doi: 10.1210/mend.15.8.0680
|