The sterol regulatory element binding transcription factor 2 (SREBF2) gene encodes a transcription factor that activates the expression of many genes involved in the synthesis and uptake of cholesterol, fatty acids, triglycerides, and phospholipids. Through bioinformatics, we found that intron 16 of the chicken SREBF2 gene might encode the chicken miR-33. Using quantitative RT-PCR, we detected the expression of miR-33 in a variety of chicken tissues including skeletal muscle, adipose tissue, and liver. Three hundred and seventy eight genes were predicted to be potential targets of miR-33 in chickens via miRNA target prediction programs “miRanda” and “TargetScan”. Among these targets, the gene FTO (fat mass and obesity associated) encodes a Fe(II)- and 2-oxoglutarate-dependent nucleic acid demethylase that regulates lipid metabolism, and the possibility that its expression is negatively regulated by miR-33 in the chicken liver was therefore further studied. Co-transfection and dual-luciferase reporter assays showed that the expression of luciferase reporter gene linked to the 3′-untranslated region (3′UTR) of the chicken FTO mRNA was down-regulated by overexpression of the chicken miR-33 in the C2C12 cells (P<0.05). Furthermore, this down-regulation was completely abolished when the predicted miR-33 target site in the FTO 3′UTR was mutated. In contrast, the expression of FTO mRNA in the primary chicken hepatocytes was up-regulated after transfection with the miR-33 inhibitor LNA-anti-miR-33. Using quantitative RT-PCR, we also found that the expression of miR-33 was increased in the chicken liver from day 0 to day 49 of age, whereas that of the FTO mRNA was decreased during the same age period. These data together suggest that miR-33 might play an important role in lipid metabolism in the chicken liver by negatively regulating the expression of the FTO gene.
Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, et al. (2010) MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci U S A 107: 17321–17326. doi: 10.1073/pnas.1008499107
[6]
Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125–1131. doi: 10.1172/jci0215593
Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, et al. (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328: 1570–1573. doi: 10.1126/science.1189862
[9]
Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, et al. (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328: 1566–1569. doi: 10.1126/science.1189123
[10]
Marquart TJ, Allen RM, Ory DS, Baldan A (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci U S A 107: 12228–12232. doi: 10.1073/pnas.1005191107
[11]
Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, et al. (2010) Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 285: 33652–33661. doi: 10.1074/jbc.m110.152090
[12]
Cirera-Salinas D, Pauta M, Allen RM, Salerno AG, Ramirez CM, et al. (2012) Mir-33 regulates cell proliferation and cell cycle progression. Cell Cycle 11: 922–933. doi: 10.4161/cc.11.5.19421
[13]
Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, et al. (2011) Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121: 2921–2931. doi: 10.1172/jci57275
[14]
Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, et al. (2011) miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108: 9232–9237. doi: 10.1073/pnas.1102281108
[15]
Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889–894. doi: 10.1126/science.1141634
[16]
Sanchez-Pulido L, Andrade-Navarro MA (2007) The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem 8: 23. doi: 10.1186/1471-2091-8-23
[17]
Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, et al. (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318: 1469–1472. doi: 10.1126/science.1151710
[18]
Jia G, Yang CG, Yang S, Jian X, Yi C, et al. (2008) Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582: 3313–3319. doi: 10.1016/j.febslet.2008.08.019
[19]
Han Z, Niu T, Chang J, Lei X, Zhao M, et al. (2010) Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 464: 1205–1209. doi: 10.1038/nature08921
[20]
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, et al. (2011) N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7: 885–887. doi: 10.1038/nchembio.687
[21]
Fredriksson R, Hagglund M, Olszewski PK, Stephansson O, Jacobsson JA, et al. (2008) The obesity gene, FTO, is of ancient origin, up-regulated during food deprivation and expressed in neurons of feeding-related nuclei of the brain. Endocrinology 149: 2062–2071. doi: 10.1210/en.2007-1457
[22]
Church C, Moir L, McMurray F, Girard C, Banks GT, et al. (2010) Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet 42: 1086–1092. doi: 10.1038/ng.713
[23]
Church C, Lee S, Bagg EA, McTaggart JS, Deacon R, et al. (2009) A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet 5: e1000599. doi: 10.1371/journal.pgen.1000599
[24]
Douaire M, Belloir B, Guillemot JC, Fraslin JM, Langlois P, et al. (1993) Lipogenic enzyme and apoprotein messenger RNAs in long-term primary culture of chicken hepatocytes. J Cell Sci 104 (Pt 3): 713–718.
[25]
Wang XG, Shao F, Wang HJ, Yang L, Yu JF, et al. (2013) MicroRNA-126 expression is decreased in cultured primary chicken hepatocytes and targets the sprouty-related EVH1 domain containing 1 mRNA. Poult Sci 92: 1888–1896. doi: 10.3382/ps.2012-02919
[26]
Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, et al. (2009) Inactivation of the Fto gene protects from obesity. Nature 458: 894–898. doi: 10.1038/nature07848
[27]
Poritsanos NJ, Lew PS, Mizuno TM (2010) Relationship between blood glucose levels and hepatic Fto mRNA expression in mice. Biochem Biophys Res Commun 400: 713–717. doi: 10.1016/j.bbrc.2010.08.133
[28]
Hermier D (1997) Lipoprotein metabolism and fattening in poultry. J Nutr 127: 805S–808S.
[29]
Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294: 858–862. doi: 10.1126/science.1065062
[30]
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14: 1902–1910. doi: 10.1101/gr.2722704
[31]
Wang D, Lu M, Miao J, Li T, Wang E, et al. (2009) Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes. PLoS One 4: e4421. doi: 10.1371/journal.pone.0004421
[32]
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20. doi: 10.1016/j.cell.2004.12.035
[33]
Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37: 495–500. doi: 10.1038/ng1536
[34]
Jia X, Nie Q, Lamont SJ, Zhang X (2012) Variation in sequence and expression of the avian FTO, and association with glucose metabolism, body weight, fatness and body composition in chickens. Int J Obes (Lond) 36: 1054–1061. doi: 10.1038/ijo.2011.221
[35]
Wang Y, Rao K, Yuan L, Everaert N, Buyse J, et al. (2012) Chicken FTO gene: tissue-specific expression, brain distribution, breed difference and effect of fasting. Comp Biochem Physiol A Mol Integr Physiol 163: 246–252. doi: 10.1016/j.cbpa.2012.08.009
[36]
Gao X, Shin YH, Li M, Wang F, Tong Q, et al. (2010) The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One 5: e14005. doi: 10.1371/journal.pone.0014005
[37]
Tiwari A, Krzysik-Walker SM, Ramachandran R (2012) Cloning and characterization of chicken fat mass and obesity associated (Fto) gene: fasting affects Fto expression. Domest Anim Endocrinol 42: 1–10. doi: 10.1016/j.domaniend.2011.08.001