全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Multiple Strategies of an Insect Herbivore to Overcome Plant Cyanogenic Glucoside Defence

DOI: 10.1371/journal.pone.0091337

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cyanogenic glucosides (CNglcs) are widespread plant defence compounds that release toxic hydrogen cyanide by plant β-glucosidase activity after tissue damage. Specialised insect herbivores have evolved counter strategies and some sequester CNglcs, but the underlying mechanisms to keep CNglcs intact during feeding and digestion are unknown. We show that CNglc-sequestering Zygaena filipendulae larvae combine behavioural, morphological, physiological and biochemical strategies at different time points during feeding and digestion to avoid toxic hydrolysis of the CNglcs present in their Lotus food plant, i.e. cyanogenesis. We found that a high feeding rate limits the time for plant β-glucosidases to hydrolyse CNglcs. Larvae performed leaf-snipping, a minimal disruptive feeding mode that prevents mixing of plant β-glucosidases and CNglcs. Saliva extracts did not inhibit plant cyanogenesis. However, a highly alkaline midgut lumen inhibited the activity of ingested plant β-glucosidases significantly. Moreover, insect β-glucosidases from the saliva and gut tissue did not hydrolyse the CNglcs present in Lotus. The strategies disclosed may also be used by other insect species to overcome CNglc-based plant defence and to sequester these compounds intact.

References

[1]  Morant AV, J?rgensen K, J?rgensen C, Paquette SM, Sánchez-Pérez R, et al. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69: 1795–1813. doi: 10.1016/j.phytochem.2008.03.006
[2]  Pentzold S, Zagrobelny M, Rook F, Bak S (2013) How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation. Biol Rev http://dx.doi.org/10.1111/brv.12066.
[3]  Ballhorn DJ, Pietrowski A, Lieberei R (2010) Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). J Ecol 98: 226–236. doi: 10.1111/j.1365-2745.2009.01591.x
[4]  Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Ann Rev Entomol 47: 57–92.
[5]  Duffey SS (1980) Sequestration of plant natural products by insects. Ann Rev Entomol 25: 447–477. doi: 10.1146/annurev.en.25.010180.002311
[6]  Opitz S, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19: 117–154. doi: 10.1007/s00049-009-0018-6
[7]  Bridges M, Jones AM, Bones AM, Hodgson C, Cole R, et al. (2002) Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc Royal Soc B: Biol Sci 269: 187–191. doi: 10.1098/rspb.2001.1861
[8]  Kuhn J, Pettersson EM, Feld BK, Burse A, Termonia A, et al. (2004) Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution. Proc Natl Acad Sci USA 101: 13808–13813. doi: 10.1073/pnas.0402576101
[9]  Baden CU, Franke S, Dobler S (2012) Differing patterns of sequestration of iridoid glycosides in the Mecininae (Coleoptera, Curculionidae). Chemoecology 22: 113–118. doi: 10.1007/s00049-012-0103-0
[10]  Zagrobelny M, Olsen CE, Pentzold S, Fürstenberg-H?gg J, J?rgensen K, et al. (2014) Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore. Insect Biochem Mol Biol 44: 44–53. doi: 10.1016/j.ibmb.2013.11.003
[11]  Opitz SEW, Boevé J-L, Nagy ZT, Sonet G, Koch F, et al. (2012) Host Shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PLoS ONE 7: e33649. doi: 10.1371/journal.pone.0033649
[12]  Dobler S (2001) Evolutionary aspects of defense by recycled plant compounds in herbivorous insects. Basic Appl Ecol 2: 15–26. doi: 10.1078/1439-1791-00032
[13]  Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72: 1497–1509. doi: 10.1016/j.phytochem.2011.01.038
[14]  Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds – the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72: 1593–1604. doi: 10.1016/j.phytochem.2011.04.015
[15]  Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72: 1566–1575. doi: 10.1016/j.phytochem.2011.01.016
[16]  Zagrobelny M, M?ller BL (2011) Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry 72: 1585–1592. doi: 10.1016/j.phytochem.2011.02.023
[17]  Zagrobelny M, Bak S, M?ller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69: 1457–1468. doi: 10.1016/j.phytochem.2008.02.019
[18]  M?ller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13: 337–346. doi: 10.1016/j.pbi.2010.01.009
[19]  Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS ONE 4: e5450. doi: 10.1371/journal.pone.0005450
[20]  Engler HS, Spencer KC, Gilbert LE (2000) Insect metabolism: preventing cyanide release from leaves. Nature 406: 144–145.
[21]  Zagrobelny M, Bak S, Thorn Ekstr?m C, Erik Olsen C, Lindberg M?ller B (2007) The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem Mol Biol 37: 10–18. doi: 10.1016/j.ibmb.2006.09.008
[22]  Jensen NB, Zagrobelny M, Hjern? K, Olsen CE, Houghton-Larsen J, et al. (2011) Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat Comm 2: 273. doi: 10.1038/ncomms1271
[23]  Davis R, Nahrstedt A (1987) Biosynthesis of cyanogenic glucosides in butterflies and moths: Effective incorporation of 2-methylpropanenitrile and 2-methylbutanenitrile into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Insect Biochem17: 689–693.
[24]  Franzl S, Ackermann I, Nahrstedt A (1989) Purification and characterization of a β-glucosidase (linamarase) from the haemolymph of Zygaena trifolii Esper, 1783 (Insecta, Lepidoptera). Experientia 45: 712–718. doi: 10.1007/bf01974565
[25]  Takos A, Lai D, Mikkelsen L, Abou Hachem M, Shelton D, et al. (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell 22: 1605–1619. doi: 10.1105/tpc.109.073502
[26]  Ferreira C, Torres BB, Terra WR (1998) Substrate specificities of midgut β-glycosidases from insects of different orders. Comp Biochem Physiol B: Biochem Mol Biol 119: 219–225. doi: 10.1016/s0305-0491(97)00310-6
[27]  Terra WR, Ferreira C (2012) Biochemistry and Molecular Biology of Digestion. In: Lawrence IG, editor. Insect Mol Biol Biochem. San Diego: Academic Press. 365–418.
[28]  Peiffer M, Felton G (2009) Do caterpillars secrete “oral secretions”? J Chem Ecol 35: 326–335. doi: 10.1007/s10886-009-9604-x
[29]  Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47: 155–162. doi: 10.1016/s0031-9422(97)00425-1
[30]  Bernays EA, Janzen DH (1988) Saturniid and Sphingid caterpillars: two ways to eat leaves. Ecology 69: 1153–1160. doi: 10.2307/1941269
[31]  Barbehenn RV (1992) Digestion of uncrushed leaf tissues by leaf-snipping larval Lepidoptera. Oecologia 89: 229–235.
[32]  Vegliante F (2005) Larval head anatomy of Heterogynis penella (Zygaenoidea, Heterogynidae), and a general discussion of caterpillar head structure (Insecta, Lepidoptera). Acta Zool 86: 167–194. doi: 10.1111/j.1463-6395.2005.00198.x
[33]  Vegliante F, Hasenfuss I (2012) Morphology and diversity of exocrine glands in lepidopteran larvae. Annu Rev Entomol 57: 187–204. doi: 10.1146/annurev-ento-120710-100646
[34]  Vegliante F, Zilli A (2004) Larval morphology of Heterogynis (Lepidoptera: Heterogynidae). Eur J Entomol 101: 165–184. doi: 10.14411/eje.2004.021
[35]  Fanger H, Naumann C (2001) The morphology of the last instar larva of Aglaope infausta (Lepidoptera: Zygaenidae: Chalcosiinae). Eur J Entomol 98: 201–218. doi: 10.14411/eje.2001.038
[36]  Fitzgerald T, Stevens M, Miller S, Jeffers P (2008) Aposematism in Archips cerasivoranus is not linked to the sequestration of host-derived cyanide. J Chem Ecol 34: 1283–1289. doi: 10.1007/s10886-008-9545-9
[37]  Fitzgerald TD (2008) Larvae of the fall webworm, Hyphantria cunea, inhibit cyanogenesis in Prunus serotina. J Exp Biol 211: 671–677. doi: 10.1242/jeb.013664
[38]  Ballhorn DJ, Kautz S, Lieberei R (2010) Comparing responses of generalist and specialist herbivores to various cyanogenic plant features. Entomol Exp Appl 134: 245–259. doi: 10.1111/j.1570-7458.2009.00961.x
[39]  Dow JAT (1986) Insect midgut function. In: Evans PD, Wigglesworth VB, editors. Adv Insect Physiol: Academic Press, London. 187–328.
[40]  Dutartre L, Audant-Lacour P, Hilliou F, Feyereisen R (2011) Toxicological and transcriptomic effects of DIMBOA and its precursors on the polyphagous insect Spodoptera frugiperda (Chapter 3 of: Co-evolution plantes-insectes: adaptation des lépidoptères aux Poaceae, Ph.D. thesis). Nice: Université de Nice-Sophia Antipolis. 248 p.
[41]  Witthohn K, Naumann CM (1987) Cyanogenesis–a general phenomenon in the lepidoptera? J Chem Ecol 13: 1789–1809. doi: 10.1007/bf01013229
[42]  Ketudat Cairns J, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67: 3389–3405. doi: 10.1007/s00018-010-0399-2
[43]  Berenbaum M (1980) Adaptive significance of midgut pH in larval Lepidoptera. Am Nat 115: 138–146. doi: 10.1086/283551
[44]  Ruuhola T, Tikkanen O-P, Tahvanainen J (2001) Differences in host use efficiency of larvae of a generalist moth, Operophtera brumata on three chemically divergent Salix species. J Chem Ecol 27: 1595–1615.
[45]  Ruuhola T, Julkunen-Tiitto R, Vainiotalo P (2003) In vitro degradation of willow Salicylates. J Chem Ecol 29: 1083–1097.
[46]  Waterhouse D (1949) The hydrogen ion concentration in the alimentary canal of larval and adult Lepidoptera. Austral J Biol Sci 2: 428–437.
[47]  Dow JAT (1992) pH gradients in lepidopteran midgut. J Exp Biol172: 355–375.
[48]  Strauss AS, Peters S, Boland W, Burse A (2013) ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. eLife 2.
[49]  Blake JD, Murphy PT, Richards GN (1971) Isolation and A/B classification of hemicelluloses. Carbohydr Res 16: 49–57. doi: 10.1016/s0008-6215(00)86097-8
[50]  Felton G, Duffey S (1991) Reassessment of the role of gut alkalinity and detergency in insect herbivory. J Chem Ecol 17: 1821–1836. doi: 10.1007/bf00993731
[51]  Christeller JT, Laing WA, Markwick NP, Burgess EPJ (1992) Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol Bio 22: 735–746. doi: 10.1016/0965-1748(92)90052-g
[52]  Anwar A, Saleemuddin M (1998) Alkaline proteases: A review. Biores Technol 64: 175–183. doi: 10.1016/s0960-8524(97)00182-x
[53]  Pytelková J, Hubert J, Lep?ík M, ?obotník J, ?indelka R, et al. (2009) Digestive α-amylases of the flour moth Ephestia kuehniella– adaptation to alkaline environment and plant inhibitors. FEBS Journal 276: 3531–3546. doi: 10.1111/j.1742-4658.2009.07074.x
[54]  Fojan P, Jonson PH, Petersen MTN, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82: 1033–1041. doi: 10.1016/s0300-9084(00)01188-3
[55]  Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol Part B: Comp Biochem 109: 1–62. doi: 10.1016/0305-0491(94)90141-4
[56]  Dow JA, O’Donnell MJ (1990) Reversible alkalinization by Manduca sexta midgut. J Exp Biol 150: 247–256.
[57]  Gringorten J, Crawford D, Harvey W (1993) High pH in the ectoperitrophic space of the larval lepidopteran midgut. J Exp Biol 183: 353–359.
[58]  Marana SR, Terra WR, Ferreira C (2000) Purification and properties of a β-glycosidase purified from midgut cells of Spodoptera frugiperda (Lepidoptera) larvae. Insect Biochem Mol Biol 30: 1139–1146. doi: 10.1016/s0965-1748(00)00090-4
[59]  Azevedo TR, Terra WR, Ferreira C (2003) Purification and characterization of three β-glycosidases from midgut of the sugar cane borer, Diatraea saccharalis. Insect Biochem Mol Biol 33: 81–92. doi: 10.1016/s0965-1748(02)00179-0
[60]  Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, et al. (2002) Herbivory: caterpillar saliva beats plant defences. Nature 416: 599–600. doi: 10.1038/416599a
[61]  Musser RO, Cipollini DF, Hum-Musser SM, Williams SA, Brown JK, et al. (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol 58: 128–137. doi: 10.1002/arch.20039
[62]  Bjarnholt N, Rook F, Motawia MS, Cornett C, J?rgensen C, et al. (2008) Diversification of an ancient theme: Hydroxynitrile glucosides. Phytochemistry 69: 1507–1516. doi: 10.1016/j.phytochem.2008.01.022
[63]  Lambert JL, Ramasamy J, Paukstelis JV (1975) Stable reagents for the colorimetric determination of cyanide by modified Koenig reactions. Anal Chem 47: 916–918. doi: 10.1021/ac60356a036
[64]  Halkier BA, M?ller BL (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol 90: 1552–1559. doi: 10.1104/pp.90.4.1552
[65]  Pankoke H, Bowers MD, Dobler S (2012) The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae). Insect Biochem Mol Biol 42: 426–434. doi: 10.1016/j.ibmb.2012.02.004
[66]  Feigl F, Anger V (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91: 282–284. doi: 10.1039/an9669100282

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133