[1] | Morant AV, J?rgensen K, J?rgensen C, Paquette SM, Sánchez-Pérez R, et al. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry 69: 1795–1813. doi: 10.1016/j.phytochem.2008.03.006
|
[2] | Pentzold S, Zagrobelny M, Rook F, Bak S (2013) How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation. Biol Rev http://dx.doi.org/10.1111/brv.12066.
|
[3] | Ballhorn DJ, Pietrowski A, Lieberei R (2010) Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.). J Ecol 98: 226–236. doi: 10.1111/j.1365-2745.2009.01591.x
|
[4] | Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Ann Rev Entomol 47: 57–92.
|
[5] | Duffey SS (1980) Sequestration of plant natural products by insects. Ann Rev Entomol 25: 447–477. doi: 10.1146/annurev.en.25.010180.002311
|
[6] | Opitz S, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19: 117–154. doi: 10.1007/s00049-009-0018-6
|
[7] | Bridges M, Jones AM, Bones AM, Hodgson C, Cole R, et al. (2002) Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc Royal Soc B: Biol Sci 269: 187–191. doi: 10.1098/rspb.2001.1861
|
[8] | Kuhn J, Pettersson EM, Feld BK, Burse A, Termonia A, et al. (2004) Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution. Proc Natl Acad Sci USA 101: 13808–13813. doi: 10.1073/pnas.0402576101
|
[9] | Baden CU, Franke S, Dobler S (2012) Differing patterns of sequestration of iridoid glycosides in the Mecininae (Coleoptera, Curculionidae). Chemoecology 22: 113–118. doi: 10.1007/s00049-012-0103-0
|
[10] | Zagrobelny M, Olsen CE, Pentzold S, Fürstenberg-H?gg J, J?rgensen K, et al. (2014) Sequestration, tissue distribution and developmental transmission of cyanogenic glucosides in a specialist insect herbivore. Insect Biochem Mol Biol 44: 44–53. doi: 10.1016/j.ibmb.2013.11.003
|
[11] | Opitz SEW, Boevé J-L, Nagy ZT, Sonet G, Koch F, et al. (2012) Host Shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PLoS ONE 7: e33649. doi: 10.1371/journal.pone.0033649
|
[12] | Dobler S (2001) Evolutionary aspects of defense by recycled plant compounds in herbivorous insects. Basic Appl Ecol 2: 15–26. doi: 10.1078/1439-1791-00032
|
[13] | Boeckler GA, Gershenzon J, Unsicker SB (2011) Phenolic glycosides of the Salicaceae and their role as anti-herbivore defenses. Phytochemistry 72: 1497–1509. doi: 10.1016/j.phytochem.2011.01.038
|
[14] | Dobler S, Petschenka G, Pankoke H (2011) Coping with toxic plant compounds – the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72: 1593–1604. doi: 10.1016/j.phytochem.2011.04.015
|
[15] | Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72: 1566–1575. doi: 10.1016/j.phytochem.2011.01.016
|
[16] | Zagrobelny M, M?ller BL (2011) Cyanogenic glucosides in the biological warfare between plants and insects: The Burnet moth-Birdsfoot trefoil model system. Phytochemistry 72: 1585–1592. doi: 10.1016/j.phytochem.2011.02.023
|
[17] | Zagrobelny M, Bak S, M?ller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69: 1457–1468. doi: 10.1016/j.phytochem.2008.02.019
|
[18] | M?ller BL (2010) Functional diversifications of cyanogenic glucosides. Curr Opin Plant Biol 13: 337–346. doi: 10.1016/j.pbi.2010.01.009
|
[19] | Ballhorn DJ, Kautz S, Heil M, Hegeman AD (2009) Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS ONE 4: e5450. doi: 10.1371/journal.pone.0005450
|
[20] | Engler HS, Spencer KC, Gilbert LE (2000) Insect metabolism: preventing cyanide release from leaves. Nature 406: 144–145.
|
[21] | Zagrobelny M, Bak S, Thorn Ekstr?m C, Erik Olsen C, Lindberg M?ller B (2007) The cyanogenic glucoside composition of Zygaena filipendulae (Lepidoptera: Zygaenidae) as effected by feeding on wild-type and transgenic lotus populations with variable cyanogenic glucoside profiles. Insect Biochem Mol Biol 37: 10–18. doi: 10.1016/j.ibmb.2006.09.008
|
[22] | Jensen NB, Zagrobelny M, Hjern? K, Olsen CE, Houghton-Larsen J, et al. (2011) Convergent evolution in biosynthesis of cyanogenic defence compounds in plants and insects. Nat Comm 2: 273. doi: 10.1038/ncomms1271
|
[23] | Davis R, Nahrstedt A (1987) Biosynthesis of cyanogenic glucosides in butterflies and moths: Effective incorporation of 2-methylpropanenitrile and 2-methylbutanenitrile into linamarin and lotaustralin by Zygaena and Heliconius species (Lepidoptera). Insect Biochem17: 689–693.
|
[24] | Franzl S, Ackermann I, Nahrstedt A (1989) Purification and characterization of a β-glucosidase (linamarase) from the haemolymph of Zygaena trifolii Esper, 1783 (Insecta, Lepidoptera). Experientia 45: 712–718. doi: 10.1007/bf01974565
|
[25] | Takos A, Lai D, Mikkelsen L, Abou Hachem M, Shelton D, et al. (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell 22: 1605–1619. doi: 10.1105/tpc.109.073502
|
[26] | Ferreira C, Torres BB, Terra WR (1998) Substrate specificities of midgut β-glycosidases from insects of different orders. Comp Biochem Physiol B: Biochem Mol Biol 119: 219–225. doi: 10.1016/s0305-0491(97)00310-6
|
[27] | Terra WR, Ferreira C (2012) Biochemistry and Molecular Biology of Digestion. In: Lawrence IG, editor. Insect Mol Biol Biochem. San Diego: Academic Press. 365–418.
|
[28] | Peiffer M, Felton G (2009) Do caterpillars secrete “oral secretions”? J Chem Ecol 35: 326–335. doi: 10.1007/s10886-009-9604-x
|
[29] | Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47: 155–162. doi: 10.1016/s0031-9422(97)00425-1
|
[30] | Bernays EA, Janzen DH (1988) Saturniid and Sphingid caterpillars: two ways to eat leaves. Ecology 69: 1153–1160. doi: 10.2307/1941269
|
[31] | Barbehenn RV (1992) Digestion of uncrushed leaf tissues by leaf-snipping larval Lepidoptera. Oecologia 89: 229–235.
|
[32] | Vegliante F (2005) Larval head anatomy of Heterogynis penella (Zygaenoidea, Heterogynidae), and a general discussion of caterpillar head structure (Insecta, Lepidoptera). Acta Zool 86: 167–194. doi: 10.1111/j.1463-6395.2005.00198.x
|
[33] | Vegliante F, Hasenfuss I (2012) Morphology and diversity of exocrine glands in lepidopteran larvae. Annu Rev Entomol 57: 187–204. doi: 10.1146/annurev-ento-120710-100646
|
[34] | Vegliante F, Zilli A (2004) Larval morphology of Heterogynis (Lepidoptera: Heterogynidae). Eur J Entomol 101: 165–184. doi: 10.14411/eje.2004.021
|
[35] | Fanger H, Naumann C (2001) The morphology of the last instar larva of Aglaope infausta (Lepidoptera: Zygaenidae: Chalcosiinae). Eur J Entomol 98: 201–218. doi: 10.14411/eje.2001.038
|
[36] | Fitzgerald T, Stevens M, Miller S, Jeffers P (2008) Aposematism in Archips cerasivoranus is not linked to the sequestration of host-derived cyanide. J Chem Ecol 34: 1283–1289. doi: 10.1007/s10886-008-9545-9
|
[37] | Fitzgerald TD (2008) Larvae of the fall webworm, Hyphantria cunea, inhibit cyanogenesis in Prunus serotina. J Exp Biol 211: 671–677. doi: 10.1242/jeb.013664
|
[38] | Ballhorn DJ, Kautz S, Lieberei R (2010) Comparing responses of generalist and specialist herbivores to various cyanogenic plant features. Entomol Exp Appl 134: 245–259. doi: 10.1111/j.1570-7458.2009.00961.x
|
[39] | Dow JAT (1986) Insect midgut function. In: Evans PD, Wigglesworth VB, editors. Adv Insect Physiol: Academic Press, London. 187–328.
|
[40] | Dutartre L, Audant-Lacour P, Hilliou F, Feyereisen R (2011) Toxicological and transcriptomic effects of DIMBOA and its precursors on the polyphagous insect Spodoptera frugiperda (Chapter 3 of: Co-evolution plantes-insectes: adaptation des lépidoptères aux Poaceae, Ph.D. thesis). Nice: Université de Nice-Sophia Antipolis. 248 p.
|
[41] | Witthohn K, Naumann CM (1987) Cyanogenesis–a general phenomenon in the lepidoptera? J Chem Ecol 13: 1789–1809. doi: 10.1007/bf01013229
|
[42] | Ketudat Cairns J, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67: 3389–3405. doi: 10.1007/s00018-010-0399-2
|
[43] | Berenbaum M (1980) Adaptive significance of midgut pH in larval Lepidoptera. Am Nat 115: 138–146. doi: 10.1086/283551
|
[44] | Ruuhola T, Tikkanen O-P, Tahvanainen J (2001) Differences in host use efficiency of larvae of a generalist moth, Operophtera brumata on three chemically divergent Salix species. J Chem Ecol 27: 1595–1615.
|
[45] | Ruuhola T, Julkunen-Tiitto R, Vainiotalo P (2003) In vitro degradation of willow Salicylates. J Chem Ecol 29: 1083–1097.
|
[46] | Waterhouse D (1949) The hydrogen ion concentration in the alimentary canal of larval and adult Lepidoptera. Austral J Biol Sci 2: 428–437.
|
[47] | Dow JAT (1992) pH gradients in lepidopteran midgut. J Exp Biol172: 355–375.
|
[48] | Strauss AS, Peters S, Boland W, Burse A (2013) ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. eLife 2.
|
[49] | Blake JD, Murphy PT, Richards GN (1971) Isolation and A/B classification of hemicelluloses. Carbohydr Res 16: 49–57. doi: 10.1016/s0008-6215(00)86097-8
|
[50] | Felton G, Duffey S (1991) Reassessment of the role of gut alkalinity and detergency in insect herbivory. J Chem Ecol 17: 1821–1836. doi: 10.1007/bf00993731
|
[51] | Christeller JT, Laing WA, Markwick NP, Burgess EPJ (1992) Midgut protease activities in 12 phytophagous lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol Bio 22: 735–746. doi: 10.1016/0965-1748(92)90052-g
|
[52] | Anwar A, Saleemuddin M (1998) Alkaline proteases: A review. Biores Technol 64: 175–183. doi: 10.1016/s0960-8524(97)00182-x
|
[53] | Pytelková J, Hubert J, Lep?ík M, ?obotník J, ?indelka R, et al. (2009) Digestive α-amylases of the flour moth Ephestia kuehniella– adaptation to alkaline environment and plant inhibitors. FEBS Journal 276: 3531–3546. doi: 10.1111/j.1742-4658.2009.07074.x
|
[54] | Fojan P, Jonson PH, Petersen MTN, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82: 1033–1041. doi: 10.1016/s0300-9084(00)01188-3
|
[55] | Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol Part B: Comp Biochem 109: 1–62. doi: 10.1016/0305-0491(94)90141-4
|
[56] | Dow JA, O’Donnell MJ (1990) Reversible alkalinization by Manduca sexta midgut. J Exp Biol 150: 247–256.
|
[57] | Gringorten J, Crawford D, Harvey W (1993) High pH in the ectoperitrophic space of the larval lepidopteran midgut. J Exp Biol 183: 353–359.
|
[58] | Marana SR, Terra WR, Ferreira C (2000) Purification and properties of a β-glycosidase purified from midgut cells of Spodoptera frugiperda (Lepidoptera) larvae. Insect Biochem Mol Biol 30: 1139–1146. doi: 10.1016/s0965-1748(00)00090-4
|
[59] | Azevedo TR, Terra WR, Ferreira C (2003) Purification and characterization of three β-glycosidases from midgut of the sugar cane borer, Diatraea saccharalis. Insect Biochem Mol Biol 33: 81–92. doi: 10.1016/s0965-1748(02)00179-0
|
[60] | Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, et al. (2002) Herbivory: caterpillar saliva beats plant defences. Nature 416: 599–600. doi: 10.1038/416599a
|
[61] | Musser RO, Cipollini DF, Hum-Musser SM, Williams SA, Brown JK, et al. (2005) Evidence that the caterpillar salivary enzyme glucose oxidase provides herbivore offense in solanaceous plants. Arch Insect Biochem Physiol 58: 128–137. doi: 10.1002/arch.20039
|
[62] | Bjarnholt N, Rook F, Motawia MS, Cornett C, J?rgensen C, et al. (2008) Diversification of an ancient theme: Hydroxynitrile glucosides. Phytochemistry 69: 1507–1516. doi: 10.1016/j.phytochem.2008.01.022
|
[63] | Lambert JL, Ramasamy J, Paukstelis JV (1975) Stable reagents for the colorimetric determination of cyanide by modified Koenig reactions. Anal Chem 47: 916–918. doi: 10.1021/ac60356a036
|
[64] | Halkier BA, M?ller BL (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol 90: 1552–1559. doi: 10.1104/pp.90.4.1552
|
[65] | Pankoke H, Bowers MD, Dobler S (2012) The interplay between toxin-releasing β-glucosidase and plant iridoid glycosides impairs larval development in a generalist caterpillar, Grammia incorrupta (Arctiidae). Insect Biochem Mol Biol 42: 426–434. doi: 10.1016/j.ibmb.2012.02.004
|
[66] | Feigl F, Anger V (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst 91: 282–284. doi: 10.1039/an9669100282
|