[1] | Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Biophysics 80: 3696–3700. doi: 10.1073/pnas.80.12.3696
|
[2] | Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 80: 6571–6575. doi: 10.1073/pnas.80.21.6571
|
[3] | Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13: 373–380. doi: 10.1016/j.str.2005.02.002
|
[4] | Tirion M (1996) Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett 77: 1905–1908. doi: 10.1103/physrevlett.77.1905
|
[5] | Skjaerven L, Martinez A, Reuter N (2011) Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins 79: 232–243. doi: 10.1002/prot.22875
|
[6] | Hinsen K, Kneller GR (1999) A simplified force field for describing vibrational protein dynamics over the whole frequency range. J Chem Phys 111: 10766. doi: 10.1063/1.480441
|
[7] | Haliloglu T, Bahar I, Erman B (1997) Gaussian Dynamics of Folded Proteins. Phys Rev Lett 79: 3090–3093. doi: 10.1103/physrevlett.79.3090
|
[8] | Bahar I, Jernigan RL (1998) Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms. J Mol Biol 281: 871–884. doi: 10.1006/jmbi.1998.1978
|
[9] | Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, et al. (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80: 505–515. doi: 10.1016/s0006-3495(01)76033-x
|
[10] | Ahmed A, Villinger S, Gohlke H (2010) Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses. Proteins 78: 3341–3352. doi: 10.1002/prot.22841
|
[11] | Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng, Des Sel 14: 1–6. doi: 10.1093/protein/14.1.1
|
[12] | Dasgupta B, Nakamura H, Kinjo AR (2013) Counterbalance of ligand- and self-coupled motions characterizes multispecificity of ubiquitin. Protein Sci 22: 168–178. doi: 10.1002/pro.2195
|
[13] | Wako H, Endo S (2011) Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis. Biophys Chem 159: 257–266. doi: 10.1016/j.bpc.2011.07.004
|
[14] | Selvaraj S, Gromiha MM (2003) Role of hydrophobic clusters and long-range contact networks in the folding of (alpha/beta)8 barrel proteins. Biophys J 84: 1919–1925. doi: 10.1016/s0006-3495(03)75000-0
|
[15] | Kinjo AR, Nakamura H (2008) Nature of protein family signatures: insights from singular value analysis of position-specific scoring matrices. PloS one 3: e1963. doi: 10.1371/journal.pone.0001963
|
[16] | Kinjo AR, Horimoto K, Nishikawa K (2005) Predicting absolute contact numbers of native protein structure from amino acid sequence. Proteins 58: 158–165. doi: 10.1002/prot.20300
|
[17] | Nishikawa K, Ooi T (1980) Prediction of the surface-interior diagram of globular proteins by an empirical method. Int J Pept Protein Res 16: 19–32. doi: 10.1111/j.1399-3011.1980.tb02931.x
|
[18] | Nishikawa K, Ooi T (1986) Radial locations of amino acid residues in a globular protein: correlation with the sequence. J Biochem (Tokyo, Jpn) 100: 1043–1047.
|
[19] | Hubbard SJ, Thornton JM (1993) “NACCESS”, Computer Program.
|
[20] | Ikeguchi M, Ueno J, Sato M, Kidera A (2005) Protein structural change upon ligand binding: linear response theory. Phys Rev Lett 94: 078102. doi: 10.1103/physrevlett.94.078102
|
[21] | Chikenji G, Fujitsuka Y, Takada S (2006) Shaping up the protein folding funnel by local interaction: lesson from a structure prediction study. Proc Natl Acad Sci U S A 103: 3141–3146. doi: 10.1073/pnas.0508195103
|
[22] | Kinjo AR, Nishikawa K (2005) Recoverable one-dimensional encoding of three-dimensional protein structures. Bioinformatics 21: 2167–2170. doi: 10.1093/bioinformatics/bti330
|
[23] | Kinjo AR, Nishikawa K (2006) CRNPRED: highly accurate prediction of one-dimensional protein structures by large-scale critical random networks. BMC Bioinformatics 7: 401.
|
[24] | Kabak?io?lu A, Kanter I, Vendruscolo M, Domany E (2002) Statistical properties of contact vectors. Phys Rev E Stat Nonlin Soft Matter Phys 65: 041904. doi: 10.1103/physreve.65.041904
|
[25] | Kondrashov DA, Cui Q, Phillips GN (2006) Optimization and evaluation of a coarse-grained model of protein motion using x-ray crystal data. Biophys J 91: 2760–2767. doi: 10.1529/biophysj.106.085894
|
[26] | Ming D, Brüschweiler R (2006) Reorientational contact-weighted elastic network model for the prediction of protein dynamics: comparison with NMR relaxation. Biophys J 90: 3382–3388. doi: 10.1529/biophysj.105.071902
|
[27] | Halle B (2002) Flexibility and packing in proteins. Proc Natl Acad Sci U S A 99: 1274–1279. doi: 10.1073/pnas.032522499
|
[28] | Li D-W, Brüschweiler R (2009) All-atom contact model for understanding protein dynamics from crystallographic B-factors. Biophys J 96: 3074–3081. doi: 10.1016/j.bpj.2009.01.011
|
[29] | Atilgan C, Okan OB, Atilgan AR (2010) How orientational order governs collectivity of folded proteins. Proteins 78: 3363–3375. doi: 10.1002/prot.22843
|
[30] | Park H, Hilsenbeck JL, Kim HJ, Shuttleworth WA, Park YH, et al. (2004) Structural studies of Streptococcus pneumoniae EPSP synthase in unliganded state, tetrahedral intermediate-bound state and S3P-GLP-bound state. Molecular microbiology 51: 963–971. doi: 10.1046/j.1365-2958.2003.03885.x
|
[31] | Chaudhuri BN, Ko J, Park C, Jones TA, Mowbray SL (1999) Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution. J Mol Biol 286: 1519–1531. doi: 10.1006/jmbi.1999.2571
|
[32] | Beattie JF, Breault GA, Ellston RPA, Green S, Jewsbury PJ, et al. (2003) Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: identification and optimisation of substituted 4,6-bis anilino pyrimidines. Bioorganic & medicinal chemistry letters 13: 2955–2960. doi: 10.1016/s0960-894x(03)00202-6
|
[33] | Eriksson AE, Jones TA, Liljas A (1988) Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4: 274–282. doi: 10.1002/prot.340040406
|
[34] | Moréra S, Larivière L, Kurzeck J, Aschke-Sonnenborn U, Freemont PS, et al. (2001) High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding. J Mol Biol 311: 569–577. doi: 10.1006/jmbi.2001.4905
|
[35] | Wang J, Stieglitz KA, Cardia JP, Kantrowitz ER (2005) Structural basis for ordered substrate binding and cooperativity in aspartate transcarbamoylase. Proc Natl Acad Sci U S A 102: 8881–8886. doi: 10.1073/pnas.0503742102
|
[36] | Müller CW, Schlauderer GJ, Reinstein J, Schulz GE (1996) Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure (London, England: 1993) 4: 147–156. doi: 10.1016/s0969-2126(96)00018-4
|
[37] | Huang J, Lipscomb WN (2004) Aspartate transcarbamylase (ATCase) of Escherichia coli: a new crystalline R-state bound to PALA, or to product analogues citrate and phosphate. Biochemistry 43: 6415–6421. doi: 10.1021/bi030213b
|
[38] | Lima CD, Klein MG, Weinstein IB, Hendrickson WA (1996) Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proc Natl Acad Sci U S A 93: 5357–5362. doi: 10.1073/pnas.93.11.5357
|
[39] | Choe JY, Poland BW, Fromm HJ, Honzatko RB (1999) Mechanistic implications from crystalline complexes of wild-type and mutant adenylosuccinate synthetases from Escherichia coli. Biochemistry 38: 6953–6961. doi: 10.1021/bi990159s
|
[40] | Magnusson U, Salopek-Sondi B, Luck LA, Mowbray SL (2004) X-ray structures of the leucine-binding protein illustrate conformational changes and the basis of ligand specificity. J Biol Chem 279: 8747–8752. doi: 10.1074/jbc.m311890200
|
[41] | Smith GM, Alexander RS, Christianson DW, McKeever BM, Ponticello GS, et al. (1994) Positions of His-64 and a bound water in human carbonic anhydrase II upon binding three structurally related inhibitors. Protein Sci 3: 118–125. doi: 10.1002/pro.5560030115
|
[42] | Reuter K, Sanderbrand S, Jomaa H, Wiesner J, Steinbrecher I, et al. (2002) Crystal structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem 277: 5378–5384. doi: 10.1074/jbc.m109500200
|
[43] | Schiefner A, Holtmann G, Diederichs K, Welte W, Bremer E (2004) Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 279: 48270–48281. doi: 10.1074/jbc.m403540200
|
[44] | Lima CD, Klein MG, Hendrickson WA (1997) Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science 278: 286–290. doi: 10.1126/science.278.5336.286
|
[45] | Mac Sweeney A, Lange R, Fernandes RPM, Schulz H, Dale GE, et al. (2005) The crystal structure of E.coli 1-deoxy-D-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. J Mol Biol 345: 115–127. doi: 10.1016/j.jmb.2004.10.030
|
[46] | Banaszak K, Mechin I, Frost G, Rypniewski W (2004) Structure of the reduced disulfide-bond isomerase DsbC from Escherichia coli. Acta Crystallogr D Biol Crystallogr 60: 1747–1752. doi: 10.1107/s0907444904018359
|
[47] | Momma K, Mishima Y, Hashimoto W, Mikami B, Murata K (2005) Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry 44: 5053–5064. doi: 10.1021/bi047781r
|
[48] | Müller CW, Schulz GE (1992) Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol 224: 159–177. doi: 10.1016/0022-2836(92)90582-5
|
[49] | McCarthy AA, Haebel PW, T?rr?nen A, Rybin V, Baker EN, et al. (2000) Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7: 196–199. doi: 10.1038/73295
|
[50] | Brylinski M, Skolnick J (2008) What is the relationship between the global structures of apo and holo proteins? Proteins 70: 363–377. doi: 10.1002/prot.21510
|
[51] | Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility in proteins upon ligand binding. Proteins 39: 261–268. doi: 10.1002/(sici)1097-0134(20000515)39:3<261::aid-prot90>3.0.co;2-4
|
[52] | Seeliger D, De Groot BL (2010) Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations. PLoS Comput Biol 6: 9. doi: 10.1371/journal.pcbi.1000634
|
[53] | Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194: 531–544. doi: 10.1016/0022-2836(87)90679-6
|
[54] | R Development Core Team R (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 1: 409.
|
[55] | Dasgupta B, Nakamura H, Kinjo AR (2014) Rigid-body motions of interacting proteins dominate multispecific binding of ubiquitin in a shape-dependent manner. Proteins 82: 77–89. doi: 10.1002/prot.24371
|
[56] | Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, et al.. (1999) LAPACK Users’ Guide. Third. Philadelphia, PA: Society for Industrial and Applied Mathematics.
|
[57] | Standley DM, Kinjo AR, Kinoshita K, Nakamura H (2008) Protein structure databases with new web services for structural biology and biomedical research. Briefings Bioinf 9: 276–285. doi: 10.1093/bib/bbn015
|
[58] | Kinoshita K, Nakamura H (2004) eF-site and PDBjViewer: database and viewer for protein functional sites. Bioinformatics 20: 1329–1330. doi: 10.1093/bioinformatics/bth073
|
[59] | Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29: 845–854. doi: 10.1093/bioinformatics/btt055
|
[60] | Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
|
[61] | Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926. doi: 10.1063/1.445869
|
[62] | Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684. doi: 10.1063/1.448118
|
[63] | Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18: 1463–1472. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.3.co;2-l
|
[64] | Kitao A, Hirata F, Go N (1991) The effects of solvent on the conformation and the collective motions of protein - normal mode analysis and molecular-dynamics simulations of melittin in water and in vacuum. Chem Phys 158: 447–472. doi: 10.1016/0301-0104(91)87082-7
|
[65] | Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. doi: 10.1002/bip.360221211
|
[66] | Diamond R (1988) A Note on the Rotational Superposition Problem. Acta Cryst 44: 211–216. doi: 10.1107/s0108767387010535
|