全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Specific Non-Local Interactions Are Not Necessary for Recovering Native Protein Dynamics

DOI: 10.1371/journal.pone.0091347

Full-Text   Cite this paper   Add to My Lib

Abstract:

The elastic network model (ENM) is a widely used method to study native protein dynamics by normal mode analysis (NMA). In ENM we need information about all pairwise distances, and the distance between contacting atoms is restrained to the native value. Therefore ENM requires O(N2) information to realize its dynamics for a protein consisting of N amino acid residues. To see if (or to what extent) such a large amount of specific structural information is required to realize native protein dynamics, here we introduce a novel model based on only O(N) restraints. This model, named the ‘contact number diffusion’ model (CND), includes specific distance restraints for only local (along the amino acid sequence) atom pairs, and semi-specific non-local restraints imposed on each atom, rather than atom pairs. The semi-specific non-local restraints are defined in terms of the non-local contact numbers of atoms. The CND model exhibits the dynamic characteristics comparable to ENM and more correlated with the explicit-solvent molecular dynamics simulation than ENM. Moreover, unrealistic surface fluctuations often observed in ENM were suppressed in CND. On the other hand, in some ligand-bound structures CND showed larger fluctuations of buried protein atoms interacting with the ligand compared to ENM. In addition, fluctuations from CND and ENM show comparable correlations with the experimental B-factor. Although there are some indications of the importance of some specific non-local interactions, the semi-specific non-local interactions are mostly sufficient for reproducing the native protein dynamics.

References

[1]  Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational modes. Biophysics 80: 3696–3700. doi: 10.1073/pnas.80.12.3696
[2]  Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 80: 6571–6575. doi: 10.1073/pnas.80.21.6571
[3]  Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13: 373–380. doi: 10.1016/j.str.2005.02.002
[4]  Tirion M (1996) Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. Phys Rev Lett 77: 1905–1908. doi: 10.1103/physrevlett.77.1905
[5]  Skjaerven L, Martinez A, Reuter N (2011) Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit. Proteins 79: 232–243. doi: 10.1002/prot.22875
[6]  Hinsen K, Kneller GR (1999) A simplified force field for describing vibrational protein dynamics over the whole frequency range. J Chem Phys 111: 10766. doi: 10.1063/1.480441
[7]  Haliloglu T, Bahar I, Erman B (1997) Gaussian Dynamics of Folded Proteins. Phys Rev Lett 79: 3090–3093. doi: 10.1103/physrevlett.79.3090
[8]  Bahar I, Jernigan RL (1998) Vibrational dynamics of transfer RNAs: comparison of the free and synthetase-bound forms. J Mol Biol 281: 871–884. doi: 10.1006/jmbi.1998.1978
[9]  Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, et al. (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80: 505–515. doi: 10.1016/s0006-3495(01)76033-x
[10]  Ahmed A, Villinger S, Gohlke H (2010) Large-scale comparison of protein essential dynamics from molecular dynamics simulations and coarse-grained normal mode analyses. Proteins 78: 3341–3352. doi: 10.1002/prot.22841
[11]  Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng, Des Sel 14: 1–6. doi: 10.1093/protein/14.1.1
[12]  Dasgupta B, Nakamura H, Kinjo AR (2013) Counterbalance of ligand- and self-coupled motions characterizes multispecificity of ubiquitin. Protein Sci 22: 168–178. doi: 10.1002/pro.2195
[13]  Wako H, Endo S (2011) Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis. Biophys Chem 159: 257–266. doi: 10.1016/j.bpc.2011.07.004
[14]  Selvaraj S, Gromiha MM (2003) Role of hydrophobic clusters and long-range contact networks in the folding of (alpha/beta)8 barrel proteins. Biophys J 84: 1919–1925. doi: 10.1016/s0006-3495(03)75000-0
[15]  Kinjo AR, Nakamura H (2008) Nature of protein family signatures: insights from singular value analysis of position-specific scoring matrices. PloS one 3: e1963. doi: 10.1371/journal.pone.0001963
[16]  Kinjo AR, Horimoto K, Nishikawa K (2005) Predicting absolute contact numbers of native protein structure from amino acid sequence. Proteins 58: 158–165. doi: 10.1002/prot.20300
[17]  Nishikawa K, Ooi T (1980) Prediction of the surface-interior diagram of globular proteins by an empirical method. Int J Pept Protein Res 16: 19–32. doi: 10.1111/j.1399-3011.1980.tb02931.x
[18]  Nishikawa K, Ooi T (1986) Radial locations of amino acid residues in a globular protein: correlation with the sequence. J Biochem (Tokyo, Jpn) 100: 1043–1047.
[19]  Hubbard SJ, Thornton JM (1993) “NACCESS”, Computer Program.
[20]  Ikeguchi M, Ueno J, Sato M, Kidera A (2005) Protein structural change upon ligand binding: linear response theory. Phys Rev Lett 94: 078102. doi: 10.1103/physrevlett.94.078102
[21]  Chikenji G, Fujitsuka Y, Takada S (2006) Shaping up the protein folding funnel by local interaction: lesson from a structure prediction study. Proc Natl Acad Sci U S A 103: 3141–3146. doi: 10.1073/pnas.0508195103
[22]  Kinjo AR, Nishikawa K (2005) Recoverable one-dimensional encoding of three-dimensional protein structures. Bioinformatics 21: 2167–2170. doi: 10.1093/bioinformatics/bti330
[23]  Kinjo AR, Nishikawa K (2006) CRNPRED: highly accurate prediction of one-dimensional protein structures by large-scale critical random networks. BMC Bioinformatics 7: 401.
[24]  Kabak?io?lu A, Kanter I, Vendruscolo M, Domany E (2002) Statistical properties of contact vectors. Phys Rev E Stat Nonlin Soft Matter Phys 65: 041904. doi: 10.1103/physreve.65.041904
[25]  Kondrashov DA, Cui Q, Phillips GN (2006) Optimization and evaluation of a coarse-grained model of protein motion using x-ray crystal data. Biophys J 91: 2760–2767. doi: 10.1529/biophysj.106.085894
[26]  Ming D, Brüschweiler R (2006) Reorientational contact-weighted elastic network model for the prediction of protein dynamics: comparison with NMR relaxation. Biophys J 90: 3382–3388. doi: 10.1529/biophysj.105.071902
[27]  Halle B (2002) Flexibility and packing in proteins. Proc Natl Acad Sci U S A 99: 1274–1279. doi: 10.1073/pnas.032522499
[28]  Li D-W, Brüschweiler R (2009) All-atom contact model for understanding protein dynamics from crystallographic B-factors. Biophys J 96: 3074–3081. doi: 10.1016/j.bpj.2009.01.011
[29]  Atilgan C, Okan OB, Atilgan AR (2010) How orientational order governs collectivity of folded proteins. Proteins 78: 3363–3375. doi: 10.1002/prot.22843
[30]  Park H, Hilsenbeck JL, Kim HJ, Shuttleworth WA, Park YH, et al. (2004) Structural studies of Streptococcus pneumoniae EPSP synthase in unliganded state, tetrahedral intermediate-bound state and S3P-GLP-bound state. Molecular microbiology 51: 963–971. doi: 10.1046/j.1365-2958.2003.03885.x
[31]  Chaudhuri BN, Ko J, Park C, Jones TA, Mowbray SL (1999) Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution. J Mol Biol 286: 1519–1531. doi: 10.1006/jmbi.1999.2571
[32]  Beattie JF, Breault GA, Ellston RPA, Green S, Jewsbury PJ, et al. (2003) Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: identification and optimisation of substituted 4,6-bis anilino pyrimidines. Bioorganic & medicinal chemistry letters 13: 2955–2960. doi: 10.1016/s0960-894x(03)00202-6
[33]  Eriksson AE, Jones TA, Liljas A (1988) Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4: 274–282. doi: 10.1002/prot.340040406
[34]  Moréra S, Larivière L, Kurzeck J, Aschke-Sonnenborn U, Freemont PS, et al. (2001) High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding. J Mol Biol 311: 569–577. doi: 10.1006/jmbi.2001.4905
[35]  Wang J, Stieglitz KA, Cardia JP, Kantrowitz ER (2005) Structural basis for ordered substrate binding and cooperativity in aspartate transcarbamoylase. Proc Natl Acad Sci U S A 102: 8881–8886. doi: 10.1073/pnas.0503742102
[36]  Müller CW, Schlauderer GJ, Reinstein J, Schulz GE (1996) Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure (London, England: 1993) 4: 147–156. doi: 10.1016/s0969-2126(96)00018-4
[37]  Huang J, Lipscomb WN (2004) Aspartate transcarbamylase (ATCase) of Escherichia coli: a new crystalline R-state bound to PALA, or to product analogues citrate and phosphate. Biochemistry 43: 6415–6421. doi: 10.1021/bi030213b
[38]  Lima CD, Klein MG, Weinstein IB, Hendrickson WA (1996) Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proc Natl Acad Sci U S A 93: 5357–5362. doi: 10.1073/pnas.93.11.5357
[39]  Choe JY, Poland BW, Fromm HJ, Honzatko RB (1999) Mechanistic implications from crystalline complexes of wild-type and mutant adenylosuccinate synthetases from Escherichia coli. Biochemistry 38: 6953–6961. doi: 10.1021/bi990159s
[40]  Magnusson U, Salopek-Sondi B, Luck LA, Mowbray SL (2004) X-ray structures of the leucine-binding protein illustrate conformational changes and the basis of ligand specificity. J Biol Chem 279: 8747–8752. doi: 10.1074/jbc.m311890200
[41]  Smith GM, Alexander RS, Christianson DW, McKeever BM, Ponticello GS, et al. (1994) Positions of His-64 and a bound water in human carbonic anhydrase II upon binding three structurally related inhibitors. Protein Sci 3: 118–125. doi: 10.1002/pro.5560030115
[42]  Reuter K, Sanderbrand S, Jomaa H, Wiesner J, Steinbrecher I, et al. (2002) Crystal structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem 277: 5378–5384. doi: 10.1074/jbc.m109500200
[43]  Schiefner A, Holtmann G, Diederichs K, Welte W, Bremer E (2004) Structural basis for the binding of compatible solutes by ProX from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 279: 48270–48281. doi: 10.1074/jbc.m403540200
[44]  Lima CD, Klein MG, Hendrickson WA (1997) Structure-based analysis of catalysis and substrate definition in the HIT protein family. Science 278: 286–290. doi: 10.1126/science.278.5336.286
[45]  Mac Sweeney A, Lange R, Fernandes RPM, Schulz H, Dale GE, et al. (2005) The crystal structure of E.coli 1-deoxy-D-xylulose-5-phosphate reductoisomerase in a ternary complex with the antimalarial compound fosmidomycin and NADPH reveals a tight-binding closed enzyme conformation. J Mol Biol 345: 115–127. doi: 10.1016/j.jmb.2004.10.030
[46]  Banaszak K, Mechin I, Frost G, Rypniewski W (2004) Structure of the reduced disulfide-bond isomerase DsbC from Escherichia coli. Acta Crystallogr D Biol Crystallogr 60: 1747–1752. doi: 10.1107/s0907444904018359
[47]  Momma K, Mishima Y, Hashimoto W, Mikami B, Murata K (2005) Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with the ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry 44: 5053–5064. doi: 10.1021/bi047781r
[48]  Müller CW, Schulz GE (1992) Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol 224: 159–177. doi: 10.1016/0022-2836(92)90582-5
[49]  McCarthy AA, Haebel PW, T?rr?nen A, Rybin V, Baker EN, et al. (2000) Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat Struct Biol 7: 196–199. doi: 10.1038/73295
[50]  Brylinski M, Skolnick J (2008) What is the relationship between the global structures of apo and holo proteins? Proteins 70: 363–377. doi: 10.1002/prot.21510
[51]  Najmanovich R, Kuttner J, Sobolev V, Edelman M (2000) Side-chain flexibility in proteins upon ligand binding. Proteins 39: 261–268. doi: 10.1002/(sici)1097-0134(20000515)39:3<261::aid-prot90>3.0.co;2-4
[52]  Seeliger D, De Groot BL (2010) Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations. PLoS Comput Biol 6: 9. doi: 10.1371/journal.pcbi.1000634
[53]  Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194: 531–544. doi: 10.1016/0022-2836(87)90679-6
[54]  R Development Core Team R (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 1: 409.
[55]  Dasgupta B, Nakamura H, Kinjo AR (2014) Rigid-body motions of interacting proteins dominate multispecific binding of ubiquitin in a shape-dependent manner. Proteins 82: 77–89. doi: 10.1002/prot.24371
[56]  Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, et al.. (1999) LAPACK Users’ Guide. Third. Philadelphia, PA: Society for Industrial and Applied Mathematics.
[57]  Standley DM, Kinjo AR, Kinoshita K, Nakamura H (2008) Protein structure databases with new web services for structural biology and biomedical research. Briefings Bioinf 9: 276–285. doi: 10.1093/bib/bbn015
[58]  Kinoshita K, Nakamura H (2004) eF-site and PDBjViewer: database and viewer for protein functional sites. Bioinformatics 20: 1329–1330. doi: 10.1093/bioinformatics/bth073
[59]  Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29: 845–854. doi: 10.1093/bioinformatics/btt055
[60]  Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, et al. (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65: 712–725. doi: 10.1002/prot.21123
[61]  Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926. doi: 10.1063/1.445869
[62]  Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684. doi: 10.1063/1.448118
[63]  Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear constraint solver for molecular simulations. J Comput Chem 18: 1463–1472. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.3.co;2-l
[64]  Kitao A, Hirata F, Go N (1991) The effects of solvent on the conformation and the collective motions of protein - normal mode analysis and molecular-dynamics simulations of melittin in water and in vacuum. Chem Phys 158: 447–472. doi: 10.1016/0301-0104(91)87082-7
[65]  Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637. doi: 10.1002/bip.360221211
[66]  Diamond R (1988) A Note on the Rotational Superposition Problem. Acta Cryst 44: 211–216. doi: 10.1107/s0108767387010535

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133