全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

MiR-27a Targets sFRP1 in hFOB Cells to Regulate Proliferation, Apoptosis and Differentiation

DOI: 10.1371/journal.pone.0091354

Full-Text   Cite this paper   Add to My Lib

Abstract:

MicroRNAs (miRNAs) play a key role in the regulation of almost all the physiological and pathological processes, including bone metabolism. Recent studies have suggested that miR-27 might play a key role in osteoblast differentiation and bone formation. Increasing evidence indicates that the canonical Wnt signaling pathway contributes to different stages of bone formation. In this study, we identify miR-27a can promote osteoblast differentiation by repressing a new target, secreted frizzled-related proteins 1 (sFRP1) expression at the transcriptional level. Here, 21 candidate targets of miR-27a involved in canonical Wnt/β-catenin signaling were predicted, and a significant decrease in sFRP1 luciferase activity was observed both in 293T and MG63 cells co-transfected with the matched luciferase reporter constructs and miR-27a mimic. Furthermore, the presence of exogenous miR-27a significantly decreased sFRP1 mRNA and protein expression in hFOB1.19 cells during both proliferation and osteogenic differentiation. The over-expression of miR-27a or knockdown sFRP1 significantly increased the percentage of apoptotic hFOBs, the percentage of cells in the G2-M phase of the cell cycle and the expression of key osteoblastic markers, including ALP, SPP1, RUNX2 and ALP activity. Over-expression of miR-27a or knockdown of endogenous sFRP1 led to an accumulation of β-catenin in hFOBs. In the present study, we demonstrate that miR-27a induced gene silencing effect is a vital mechanism contributing to bone metabolism in hFOB cells in vitro, which is partly affected by the post-transcriptional regulation of sFRP1, during osteoblast proliferation, apoptosis and differentiation.

References

[1]  Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11: 3286–3305. doi: 10.1101/gad.11.24.3286
[2]  Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, et al. (2009) Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. J Cell Biol 185: 67–75. doi: 10.1083/jcb.200810137
[3]  Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5: 442–447. doi: 10.1038/nrrheum.2009.137
[4]  Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341: 19–39. doi: 10.1016/j.gene.2004.06.044
[5]  Rawadi G, Roman-Roman S (2005) Wnt signalling pathway: a new target for the treatment of osteoporosis. Expert Opin Ther Targets 9: 1063–1077. doi: 10.1517/14728222.9.5.1063
[6]  Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434: 843–850. doi: 10.1038/nature03319
[7]  Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, et al. (2004) Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–422. doi: 10.1038/ng1330
[8]  Bodine PV, Billiard J, Moran RA, Ponce-de-Leon H, McLarney S, et al. (2005) The Wnt antagonist secreted frizzled-related protein-1 controls osteoblast and osteocyte apoptosis. J Cell Biochem 96: 1212–1230. doi: 10.1002/jcb.20599
[9]  Xavier CP, Melikova M, Chuman Y, Uren A, Baljinnyam B, et al. (2014) Secreted Frizzled-related protein potentiation versus inhibition of Wnt3a/beta-catenin signaling. Cell Signal 26: 94–101. doi: 10.1016/j.cellsig.2013.09.016
[10]  Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355. doi: 10.1038/nature02871
[11]  Wienholds E, Plasterk RH (2005) MicroRNA function in animal development. FEBS Lett 579: 5911–5922. doi: 10.1016/j.febslet.2005.07.070
[12]  Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, et al. (2008) Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci U S A 105: 1949–1954. doi: 10.1073/pnas.0707900105
[13]  Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, et al. (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A 105: 13906–13911. doi: 10.1073/pnas.0804438105
[14]  Kapinas K, Kessler CB, Delany AM (2009) miR-29 suppression of osteonectin in osteoblasts: regulation during differentiation and by canonical Wnt signaling. J Cell Biochem 108: 216–224. doi: 10.1002/jcb.22243
[15]  Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402: 186–189. doi: 10.1016/j.bbrc.2010.08.031
[16]  Tang W, Zhu J, Su S, Wu W, Liu Q, et al. (2012) MiR-27 as a prognostic marker for breast cancer progression and patient survival. PLoS One 7: e51702. doi: 10.1371/journal.pone.0051702
[17]  Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, et al. (2010) A network connecting Runx2, SATB2, and the miR-23a~27a~24–2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A 107: 19879–19884. doi: 10.1073/pnas.1007698107
[18]  Gong Y, Xu F, Zhang L, Qian Y, Chen J, et al. (2013) MicroRNA expression signature for Satb2-induced osteogenic differentiation in bone marrow stromal cells. Mol Cell Biochem.
[19]  Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, et al. (2013) MiR-27 Targets Prohibitin and Impairs Adipocyte Differentiation and Mitochondrial Function in Human Adipose-derived Stem Cells. J Biol Chem.
[20]  Chen X, Huang Z, Chen D, Yang T, Liu G (2013) MicroRNA-27a is induced by leucine and contributes to leucine-induced proliferation promotion in C2C12 cells. Int J Mol Sci 14: 14076–14084. doi: 10.3390/ijms140714076
[21]  Huang Z, Chen X, Yu B, He J, Chen D (2012) MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem Biophys Res Commun 423: 265–269. doi: 10.1016/j.bbrc.2012.05.106
[22]  Liu G, Cao P, Chen H, Yuan W, Wang J, et al. (2013) MiR-27a Regulates Apoptosis in Nucleus Pulposus Cells by Targeting PI3K. PLoS One 8: e75251. doi: 10.1371/journal.pone.0075251
[23]  Ji J, Zhang J, Huang G, Qian J, Wang X, et al. (2009) Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett 583: 759–766. doi: 10.1016/j.febslet.2009.01.034
[24]  Kim SY, Kim AY, Lee HW, Son YH, Lee GY, et al. (2010) miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem Biophys Res Commun 392: 323–328. doi: 10.1016/j.bbrc.2010.01.012
[25]  Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402: 186–189. doi: 10.1016/j.bbrc.2010.08.031
[26]  Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, et al. (2010) A network connecting Runx2, SATB2, and the miR-23a~27a~24–2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci U S A 107: 19879–19884. doi: 10.1073/pnas.1007698107
[27]  Kapinas K, Kessler C, Ricks T, Gronowicz G, Delany AM (2010) miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285: 25221–25231. doi: 10.1074/jbc.m110.116137
[28]  Harris SA, Enger RJ, Riggs BL, Spelsberg TC (1995) Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 10: 178–186. doi: 10.1002/jbmr.5650100203
[29]  Yen ML, Chien CC, Chiu IM, Huang HI, Chen YC, et al. (2007) Multilineage differentiation and characterization of the human fetal osteoblastic 1.19 cell line: a possible in vitro model of human mesenchymal progenitors. Stem Cells 25: 125–131. doi: 10.1634/stemcells.2006-0295
[30]  Subramaniam M, Jalal SM, Rickard DJ, Harris SA, Bolander ME, et al. (2002) Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J Cell Biochem 87: 9–15. doi: 10.1002/jcb.10259
[31]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262
[32]  Zeng Y, Cullen BR (2003) Sequence requirements for micro RNA processing and function in human cells. RNA 9: 112–123. doi: 10.1261/rna.2780503
[33]  Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, et al. (1998) Differential effect of steady versus oscillating flow on bone cells. J Biomech 31: 969–976. doi: 10.1016/s0021-9290(98)00114-6
[34]  Subramaniam M, Jalal SM, Rickard DJ, Harris SA, Bolander ME, et al. (2002) Further characterization of human fetal osteoblastic hFOB 1.19 and hFOB/ER alpha cells: bone formation in vivo and karyotype analysis using multicolor fluorescent in situ hybridization. J Cell Biochem 87: 9–15. doi: 10.1002/jcb.10259
[35]  Qiang YW, Barlogie B, Rudikoff S, Shaughnessy JD Jr (2008) Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 42: 669–680. doi: 10.1016/j.bone.2007.12.006
[36]  Wang T, Xu Z (2010) miR-27 promotes osteoblast differentiation by modulating Wnt signaling. Biochem Biophys Res Commun 402: 186–189. doi: 10.1016/j.bbrc.2010.08.031
[37]  Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through present computational approaches for the identification of mammalian microRNA targets. Nat Methods 3: 881–886. doi: 10.1038/nmeth954
[38]  Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z (2009) A role of miR-27 in the regulation of adipogenesis. FEBS J 276: 2348–2358. doi: 10.1111/j.1742-4658.2009.06967.x
[39]  Hicok KC, Thomas T, Gori F, Rickard DJ, Spelsberg TC, et al. (1998) Development and characterization of conditionally immortalized osteoblast precursor cell lines from human bone marrow stroma. J Bone Miner Res 13: 205–217. doi: 10.1359/jbmr.1998.13.2.205
[40]  Kalajzic I, Staal A, Yang WP, Wu Y, Johnson SE, et al. (2005) Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem 280: 24618–24626. doi: 10.1074/jbc.m413834200
[41]  Shea CM, Edgar CM, Einhorn TA, Gerstenfeld LC (2003) BMP treatment of C3H10T1/2 mesenchymal stem cells induces both chondrogenesis and osteogenesis. J Cell Biochem 90: 1112–1127. doi: 10.1002/jcb.10734
[42]  Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, et al. (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50. doi: 10.1038/ng.2007.30

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133