[1] | Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14: 1310–1316. doi: 10.1158/1078-0432.ccr-07-1441
|
[2] | Selvan ST, Tan TT, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26: 11631–11641. doi: 10.1021/la903512m
|
[3] | Zhang Y, Kohler N, Zhang MQ (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23: 1553–1561. doi: 10.1016/s0142-9612(01)00267-8
|
[4] | Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8: 343–375. doi: 10.1146/annurev.bioeng.8.061505.095735
|
[5] | Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40: 233–245. doi: 10.1039/c0cs00003e
|
[6] | Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, et al. (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82: 1043–1055. doi: 10.1007/s00420-009-0458-x
|
[7] | Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134: 425–439. doi: 10.1039/b818082b
|
[8] | Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, et al. (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21: 10644–10654. doi: 10.1021/la0513712
|
[9] | Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38: 1759–1782. doi: 10.1039/b806051g
|
[10] | Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104: 29–45. doi: 10.1016/j.pharmthera.2004.08.001
|
[11] | Prades R, Guerrero S, Araya E, Molina C, Salas E, et al. (2012) Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 33: 7194–7205. doi: 10.1016/j.biomaterials.2012.06.063
|
[12] | Etame AB, Diaz RJ, O'Reilly MA, Smith CA, Mainprize TG, et al. (2012) Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine 8: 1133–1142. doi: 10.1016/j.nano.2012.02.003
|
[13] | Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30: 220–230. doi: 10.1016/j.neuro.2008.12.005
|
[14] | Xu LJ, Zhao JX, Zhang T, Ren GG, Yang Z (2009) In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ Toxicol 24: 211–217. doi: 10.1002/tox.20418
|
[15] | Liu Z, Zhang T, Ren G, Yang Z (2012) Nano-Ag inhibiting action potential independent glutamatergic synaptic transmission but increasing excitability in rat CA1 pyramidal neurons. Nanotoxicology 6: 414–423. doi: 10.3109/17435390.2011.583996
|
[16] | Shan D, Xie Y, Ren G, Yang Z (2012) Inhibitory effect of tungsten carbide nanoparticles on voltage-gated potassium currents of hippocampal CA1 neurons. Toxicol Lett 209: 129–135. doi: 10.1016/j.toxlet.2011.12.001
|
[17] | Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19: 14. doi: 10.1186/1423-0127-19-14
|
[18] | Liu Z, Ren G, Zhang T, Yang Z (2009) Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 264: 179–184. doi: 10.1016/j.tox.2009.08.005
|
[19] | Shan D, Xie Y, Ren G, Yang Z (2013) Attenuated effect of tungsten carbide nanoparticles on voltage-gated sodium current of hippocampal CA1 pyramidal neurons. Toxicol In Vitro 27: 299–304. doi: 10.1016/j.tiv.2012.08.025
|
[20] | Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, et al. (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7 Suppl 4S411–422. doi: 10.1098/rsif.2010.0158.focus
|
[21] | Schulz DJ, Baines RA, Hempel CM, Li L, Liss B, et al. (2006) Cellular excitability and the regulation of functional neuronal identity: from gene expression to neuromodulation. J Neurosci 26: 10362–10367. doi: 10.1523/jneurosci.3194-06.2006
|
[22] | Dube C, Richichi C, Bender RA, Chung G, Litt B, et al. (2006) Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129: 911–922. doi: 10.1093/brain/awl018
|
[23] | Sachdev PS (2007) Alternating and postictal psychoses: review and a unifying hypothesis. Schizophr Bull 33: 1029–1037. doi: 10.1093/schbul/sbm012
|
[24] | Paulo CS, Pires das Neves R, Ferreira LS (2011) Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 22: 494002. doi: 10.1088/0957-4484/22/49/494002
|
[25] | Wang TT, Bai J, Jiang X, Nienhaus GU (2012) Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. Acs Nano 6: 1251–1259. doi: 10.1021/nn203892h
|
[26] | Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260: 799–802. doi: 10.1038/260799a0
|
[27] | Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100. doi: 10.1007/bf00656997
|
[28] | Hille B (2001) Ion channels of excitable membranes.Sinauer Associates, Inc. 3rd Edition edition.
|
[29] | Jeon D, Song I, Guido W, Kim K, Kim E, et al. (2008) Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. J Biol Chem 283: 12093–12101. doi: 10.1074/jbc.m800816200
|
[30] | Jung S, Yang H, Kim BS, Chu K, Lee SK, et al. (2012) The immunosuppressant cyclosporin A inhibits recurrent seizures in an experimental model of temporal lobe epilepsy. Neurosci Lett 529: 133–138. doi: 10.1016/j.neulet.2012.08.087
|
[31] | Errington AC, Stohr T, Heers C, Lees G (2008) The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 73: 157–169. doi: 10.1124/mol.107.039867
|
[32] | Kajsa M, Igelstr?m CHS, Heyward PM (2011) Low-magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 106: 2593–2605. doi: 10.1152/jn.00601.2011
|
[33] | Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8: 451–465. doi: 10.1038/nrn2148
|
[34] | Morin F, Beaulieu C, Lacaille JC (1996) Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices. J Neurophysiol 76: 1–16.
|
[35] | Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Journal of Neuroscience 18: 8111–8125.
|
[36] | Taverna S, Tkatch T, Metz AE, Martina M (2005) Differential expression of TASK channels between horizontal interneurons and pyramidal cells of rat hippocampus. J Neurosci 25: 9162–9170. doi: 10.1523/jneurosci.2454-05.2005
|
[37] | Johnston D, Brown TH (1984) The Synaptic Nature of the Paroxysmal Depolarizing Shift in Hippocampal-Neurons. Annals of Neurology 16: S65–S71. doi: 10.1002/ana.410160711
|
[38] | Garcia-Garcia E, Andrieux K, Gil S, Couvreur P (2005) Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298: 274–292. doi: 10.1016/j.ijpharm.2005.03.031
|
[39] | Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ blood-brain barrier transport of nanoparticles. Pharmaceutical Research 20: 1772–1778. doi: 10.1023/b:pham.0000003374.58641.62
|
[40] | Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40: 1647–1671. doi: 10.1039/c0cs00018c
|
[41] | Pan Y, Neuss S, Leifert A, Fischler M, Wen F, et al. (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3: 1941–1949. doi: 10.1002/smll.200700378
|
[42] | Chen YS, Hung YC, Lin LW, Liau I, Hong MY, et al. (2010) Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Nanotechnology 21: 485102. doi: 10.1088/0957-4484/21/48/485102
|
[43] | Hartkoorn RC, Chandler B, Owen A, Ward SA, Bertel Squire S, et al. (2007) Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinb) 87: 248–255. doi: 10.1016/j.tube.2006.12.001
|
[44] | Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81: 15–27. doi: 10.1189/jlb.0306167
|
[45] | Hodgkin AL, Huxley AF (1952) a quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544. doi: 10.1007/bf02459568
|
[46] | Kress GJ, Mennerick S (2009) Action potential initiation and propagation: upstream influences on neurotransmission. Neuroscience 158: 211–222. doi: 10.1016/j.neuroscience.2008.03.021
|
[47] | Stocker M (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5: 758–770. doi: 10.1038/nrn1516
|
[48] | Zhang X, Bertaso F, Yoo JW, Baumgartel K, Clancy SM, et al. (2010) Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat Neurosci 13: 1056–1058. doi: 10.1038/nn.2610
|
[49] | Berkefeld H, Fakler B, Schulte U (2010) Ca2+-Activated K+ Channels: From Protein Complexes to Function. Physiological Reviews 90: 1437–1459. doi: 10.1152/physrev.00049.2009
|
[50] | Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiological Reviews 79: 1317–1372.
|
[51] | Chin C, Kim IK, Lim DY, Kim KS, Lee HA, et al. (2010) Gold nanoparticle-choline complexes can block nicotinic acetylcholine receptors. International Journal of Nanomedicine 5: 315–321. doi: 10.2147/ijn.s10466
|
[52] | Leifert A, Pan Y, Kinkeldey A (2013) Schiefer F, Setzler J, et al (2013) Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proc Natl Acad Sci U S A 110: 8004–8009. doi: 10.1073/pnas.1220143110
|
[53] | Doyle DA (1998) The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science 280: 69–77. doi: 10.1126/science.280.5360.69
|
[54] | Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475: 353–358. doi: 10.1038/nature10238
|