全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Intracellular Gold Nanoparticles Increase Neuronal Excitability and Aggravate Seizure Activity in the Mouse Brain

DOI: 10.1371/journal.pone.0091360

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to their inert property, gold nanoparticles (AuNPs) have drawn considerable attention; their biological application has recently expanded to include nanomedicine and neuroscience. However, the effect of AuNPs on the bioelectrical properties of a single neuron remains unknown. Here we present the effect of AuNPs on a single neuron under physiological and pathological conditions in vitro. AuNPs were intracellularly applied to hippocampal CA1 neurons from the mouse brain. The electrophysiological property of CA1 neurons treated with 5- or 40-nm AuNPs was assessed using the whole-cell patch-clamp technique. Intracellular application of AuNPs increased both the number of action potentials (APs) and input resistance. The threshold and duration of APs and the after hyperpolarization (AHP) were decreased by the intracellular AuNPs. In addition, intracellular AuNPs elicited paroxysmal depolarizing shift-like firing patterns during sustained repetitive firings (SRF) induced by prolonged depolarization (10 sec). Furthermore, low Mg2+-induced epileptiform activity was aggravated by the intracellular AuNPs. In this study, we demonstrated that intracellular AuNPs alter the intrinsic properties of neurons toward increasing their excitability, and may have deleterious effects on neurons under pathological conditions, such as seizure. These results provide some considerable direction on application of AuNPs into central nervous system (CNS).

References

[1]  Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14: 1310–1316. doi: 10.1158/1078-0432.ccr-07-1441
[2]  Selvan ST, Tan TT, Yi DK, Jana NR (2010) Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir 26: 11631–11641. doi: 10.1021/la903512m
[3]  Zhang Y, Kohler N, Zhang MQ (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23: 1553–1561. doi: 10.1016/s0142-9612(01)00267-8
[4]  Torchilin VP (2006) Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu Rev Biomed Eng 8: 343–375. doi: 10.1146/annurev.bioeng.8.061505.095735
[5]  Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40: 233–245. doi: 10.1039/c0cs00003e
[6]  Crosera M, Bovenzi M, Maina G, Adami G, Zanette C, et al. (2009) Nanoparticle dermal absorption and toxicity: a review of the literature. Int Arch Occup Environ Health 82: 1043–1055. doi: 10.1007/s00420-009-0458-x
[7]  Marquis BJ, Love SA, Braun KL, Haynes CL (2009) Analytical methods to assess nanoparticle toxicity. Analyst 134: 425–439. doi: 10.1039/b818082b
[8]  Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, et al. (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21: 10644–10654. doi: 10.1021/la0513712
[9]  Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38: 1759–1782. doi: 10.1039/b806051g
[10]  Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104: 29–45. doi: 10.1016/j.pharmthera.2004.08.001
[11]  Prades R, Guerrero S, Araya E, Molina C, Salas E, et al. (2012) Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 33: 7194–7205. doi: 10.1016/j.biomaterials.2012.06.063
[12]  Etame AB, Diaz RJ, O'Reilly MA, Smith CA, Mainprize TG, et al. (2012) Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound. Nanomedicine 8: 1133–1142. doi: 10.1016/j.nano.2012.02.003
[13]  Zhao J, Xu L, Zhang T, Ren G, Yang Z (2009) Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons. Neurotoxicology 30: 220–230. doi: 10.1016/j.neuro.2008.12.005
[14]  Xu LJ, Zhao JX, Zhang T, Ren GG, Yang Z (2009) In vitro study on influence of nano particles of CuO on CA1 pyramidal neurons of rat hippocampus potassium currents. Environ Toxicol 24: 211–217. doi: 10.1002/tox.20418
[15]  Liu Z, Zhang T, Ren G, Yang Z (2012) Nano-Ag inhibiting action potential independent glutamatergic synaptic transmission but increasing excitability in rat CA1 pyramidal neurons. Nanotoxicology 6: 414–423. doi: 10.3109/17435390.2011.583996
[16]  Shan D, Xie Y, Ren G, Yang Z (2012) Inhibitory effect of tungsten carbide nanoparticles on voltage-gated potassium currents of hippocampal CA1 neurons. Toxicol Lett 209: 129–135. doi: 10.1016/j.toxlet.2011.12.001
[17]  Xie Y, Wang Y, Zhang T, Ren G, Yang Z (2012) Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors. J Biomed Sci 19: 14. doi: 10.1186/1423-0127-19-14
[18]  Liu Z, Ren G, Zhang T, Yang Z (2009) Action potential changes associated with the inhibitory effects on voltage-gated sodium current of hippocampal CA1 neurons by silver nanoparticles. Toxicology 264: 179–184. doi: 10.1016/j.tox.2009.08.005
[19]  Shan D, Xie Y, Ren G, Yang Z (2013) Attenuated effect of tungsten carbide nanoparticles on voltage-gated sodium current of hippocampal CA1 pyramidal neurons. Toxicol In Vitro 27: 299–304. doi: 10.1016/j.tiv.2012.08.025
[20]  Yang Z, Liu ZW, Allaker RP, Reip P, Oxford J, et al. (2010) A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 7 Suppl 4S411–422. doi: 10.1098/rsif.2010.0158.focus
[21]  Schulz DJ, Baines RA, Hempel CM, Li L, Liss B, et al. (2006) Cellular excitability and the regulation of functional neuronal identity: from gene expression to neuromodulation. J Neurosci 26: 10362–10367. doi: 10.1523/jneurosci.3194-06.2006
[22]  Dube C, Richichi C, Bender RA, Chung G, Litt B, et al. (2006) Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129: 911–922. doi: 10.1093/brain/awl018
[23]  Sachdev PS (2007) Alternating and postictal psychoses: review and a unifying hypothesis. Schizophr Bull 33: 1029–1037. doi: 10.1093/schbul/sbm012
[24]  Paulo CS, Pires das Neves R, Ferreira LS (2011) Nanoparticles for intracellular-targeted drug delivery. Nanotechnology 22: 494002. doi: 10.1088/0957-4484/22/49/494002
[25]  Wang TT, Bai J, Jiang X, Nienhaus GU (2012) Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. Acs Nano 6: 1251–1259. doi: 10.1021/nn203892h
[26]  Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260: 799–802. doi: 10.1038/260799a0
[27]  Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100. doi: 10.1007/bf00656997
[28]  Hille B (2001) Ion channels of excitable membranes.Sinauer Associates, Inc. 3rd Edition edition.
[29]  Jeon D, Song I, Guido W, Kim K, Kim E, et al. (2008) Ablation of Ca2+ channel beta3 subunit leads to enhanced N-methyl-D-aspartate receptor-dependent long term potentiation and improved long term memory. J Biol Chem 283: 12093–12101. doi: 10.1074/jbc.m800816200
[30]  Jung S, Yang H, Kim BS, Chu K, Lee SK, et al. (2012) The immunosuppressant cyclosporin A inhibits recurrent seizures in an experimental model of temporal lobe epilepsy. Neurosci Lett 529: 133–138. doi: 10.1016/j.neulet.2012.08.087
[31]  Errington AC, Stohr T, Heers C, Lees G (2008) The investigational anticonvulsant lacosamide selectively enhances slow inactivation of voltage-gated sodium channels. Mol Pharmacol 73: 157–169. doi: 10.1124/mol.107.039867
[32]  Kajsa M, Igelstr?m CHS, Heyward PM (2011) Low-magnesium medium induces epileptiform activity in mouse olfactory bulb slices. J Neurophysiol 106: 2593–2605. doi: 10.1152/jn.00601.2011
[33]  Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8: 451–465. doi: 10.1038/nrn2148
[34]  Morin F, Beaulieu C, Lacaille JC (1996) Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices. J Neurophysiol 76: 1–16.
[35]  Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. Journal of Neuroscience 18: 8111–8125.
[36]  Taverna S, Tkatch T, Metz AE, Martina M (2005) Differential expression of TASK channels between horizontal interneurons and pyramidal cells of rat hippocampus. J Neurosci 25: 9162–9170. doi: 10.1523/jneurosci.2454-05.2005
[37]  Johnston D, Brown TH (1984) The Synaptic Nature of the Paroxysmal Depolarizing Shift in Hippocampal-Neurons. Annals of Neurology 16: S65–S71. doi: 10.1002/ana.410160711
[38]  Garcia-Garcia E, Andrieux K, Gil S, Couvreur P (2005) Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm 298: 274–292. doi: 10.1016/j.ijpharm.2005.03.031
[39]  Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ blood-brain barrier transport of nanoparticles. Pharmaceutical Research 20: 1772–1778. doi: 10.1023/b:pham.0000003374.58641.62
[40]  Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40: 1647–1671. doi: 10.1039/c0cs00018c
[41]  Pan Y, Neuss S, Leifert A, Fischler M, Wen F, et al. (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3: 1941–1949. doi: 10.1002/smll.200700378
[42]  Chen YS, Hung YC, Lin LW, Liau I, Hong MY, et al. (2010) Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles. Nanotechnology 21: 485102. doi: 10.1088/0957-4484/21/48/485102
[43]  Hartkoorn RC, Chandler B, Owen A, Ward SA, Bertel Squire S, et al. (2007) Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis (Edinb) 87: 248–255. doi: 10.1016/j.tube.2006.12.001
[44]  Schmitt E, Gehrmann M, Brunet M, Multhoff G, Garrido C (2007) Intracellular and extracellular functions of heat shock proteins: repercussions in cancer therapy. J Leukoc Biol 81: 15–27. doi: 10.1189/jlb.0306167
[45]  Hodgkin AL, Huxley AF (1952) a quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544. doi: 10.1007/bf02459568
[46]  Kress GJ, Mennerick S (2009) Action potential initiation and propagation: upstream influences on neurotransmission. Neuroscience 158: 211–222. doi: 10.1016/j.neuroscience.2008.03.021
[47]  Stocker M (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat Rev Neurosci 5: 758–770. doi: 10.1038/nrn1516
[48]  Zhang X, Bertaso F, Yoo JW, Baumgartel K, Clancy SM, et al. (2010) Deletion of the potassium channel Kv12.2 causes hippocampal hyperexcitability and epilepsy. Nat Neurosci 13: 1056–1058. doi: 10.1038/nn.2610
[49]  Berkefeld H, Fakler B, Schulte U (2010) Ca2+-Activated K+ Channels: From Protein Complexes to Function. Physiological Reviews 90: 1437–1459. doi: 10.1152/physrev.00049.2009
[50]  Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiological Reviews 79: 1317–1372.
[51]  Chin C, Kim IK, Lim DY, Kim KS, Lee HA, et al. (2010) Gold nanoparticle-choline complexes can block nicotinic acetylcholine receptors. International Journal of Nanomedicine 5: 315–321. doi: 10.2147/ijn.s10466
[52]  Leifert A, Pan Y, Kinkeldey A (2013) Schiefer F, Setzler J, et al (2013) Differential hERG ion channel activity of ultrasmall gold nanoparticles. Proc Natl Acad Sci U S A 110: 8004–8009. doi: 10.1073/pnas.1220143110
[53]  Doyle DA (1998) The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity. Science 280: 69–77. doi: 10.1126/science.280.5360.69
[54]  Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475: 353–358. doi: 10.1038/nature10238

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133