全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Quantification of Acute Vocal Fold Epithelial Surface Damage with Increasing Time and Magnitude Doses of Vibration Exposure

DOI: 10.1371/journal.pone.0091615

Full-Text   Cite this paper   Add to My Lib

Abstract:

Because the vocal folds undergo repeated trauma during continuous cycles of vibration, the epithelium is routinely susceptible to damage during phonation. Excessive and prolonged vibration exposure is considered a significant predisposing factor in the development of vocal fold pathology. The purpose of the present study was to quantify the extent of epithelial surface damage following increased time and magnitude doses of vibration exposure using an in vivo rabbit phonation model. Forty-five New Zealand white breeder rabbits were randomized to nine groups and received varying phonation time-doses (30, 60, or 120 minutes) and magnitude-doses (control, modal intensity phonation, or raised intensity phonation) of vibration exposure. Scanning electron microscopy and transmission electron microscopy was used to quantify the degree of epithelial surface damage. Results revealed a significant reduction in microprojection density, microprojection height, and depth of the epithelial surface with increasing time and phonation magnitudes doses, signifying increased epithelial surface damage risk with excessive and prolonged vibration exposure. Destruction to the epithelial cell surface may provide significant insight into the disruption of cell function following prolonged vibration exposure. One important goal achieved in the present study was the quantification of epithelial surface damage using objective imaging criteria. These data provide an important foundation for future studies of long-term tissue recovery from excessive and prolonged vibration exposure.

References

[1]  Cohen SM (2010) Self-reported impact of dysphonia in a primary care population: An epidemiological study. Laryngoscope 120: 2022–2032. doi: 10.1002/lary.21058
[2]  Roy N, Merrill RM, Gray SD, Smith EM (2005) Voice disorders in the general population: Prevalence, risk factors, and occupational impact. Laryngoscope 115: 1988–1995. doi: 10.1097/01.mlg.0000179174.32345.41
[3]  Cohen SM, Kim J, Roy N, Asche C, Courey M (2012) Direct health care costs of laryngeal diseases and disorders. Laryngoscope 122: 1582–1588. doi: 10.1002/lary.23189
[4]  Jacobson BH, Johnson A, Grywalski C, Silbergleit A, Jacobson G, et al. (1997) The Voice Handicap Index (VHI): Development and validation. Am J Speech-Lang Pat 6: 66–70.
[5]  Bouwers F, Dikkers FG (2009) A retrospective study concerning the psychosocial impact of voice disorders: Voice Handicap Index change in patients with benign voice disorders after treatment (measured with the Dutch version of the VHI). J Voice 23: 218–224. doi: 10.1016/j.jvoice.2007.08.007
[6]  Hirano M (1974) Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatr 26: 89–94. doi: 10.1159/000263771
[7]  Fisher KV, Telser A, Phillips JE, Yeates DB (2001) Regulation of vocal fold transepithelial water fluxes. J Appl Physiol 91: 1401–1411.
[8]  Leydon C, Sivasankar M, Falciglia DL, Atkins C, Fisher KV (2009) Vocal fold surface hydration: A review. J Voice 23: 658–665. doi: 10.1016/j.jvoice.2008.03.010
[9]  Tillmann B (1977) The human vocal cord surface. Cell Tissue Res 185: 279–283. doi: 10.1007/bf00220671
[10]  Talbot C, Jordan TM, Roberts NW, Collin SP, Marshall NJ, et al. (2012) Corneal microprojections in coleoid cephalopods. J Comp Physiol A 198: 849–856. doi: 10.1007/s00359-012-0755-9
[11]  Andrews PM (1981) Characterization of free surface microprojections of the kidney glomerular epithelium. Prog Clin Biol Res 59B: 21–35.
[12]  Hauri HP, Sterchi EE, Bienz D, Fransen JA, Marxer A (1985) Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol 101: 838–851. doi: 10.1083/jcb.101.3.838
[13]  Collin SP, Collin HB (2006) The corneal epithelial surface in the eyes of vertebrates: Environmental and evolutionary influences on structure and function. J Morphol 267: 273–291. doi: 10.1002/jmor.10400
[14]  Collin HB, Collin SP (2000) The corneal surface of aquatic vertebrates: Microstructures with optical and nutrition function? Philos Trans R Soc Lond B Biol Sci 29: 1171–1176.
[15]  Gray SD (2000) Cellular physiology of the vocal folds. Otolaryngol Clin North Am 33: 679–698. doi: 10.1016/s0030-6665(05)70237-1
[16]  Titze IR (1994) Mechanical stress in phonation. J Voice 8: 99–105. doi: 10.1016/s0892-1997(05)80302-9
[17]  Chan RW, Titze IR (1999) Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. J Acoust Soc Am 106: 2008–2021. doi: 10.1121/1.427947
[18]  Gray S, Titze I (1988) Histologic investigation of hyperphonated canine vocal cords. Ann Otol Rhinol Laryngol 97: 381–388.
[19]  Rousseau B, Suehiro A, Echemendia N (2011) Sivasankar (2011) Raised intensity phonation compromises vocal fold epithelial barrier integrity. Laryngoscope 121: 346–351. doi: 10.1002/lary.21364
[20]  Swanson ER, Abdollahian D, Ohno T, Ge P, Sealer DL, et al. (2009) Characterization of raised phonation in an evoked rabbit phonation model. Laryngoscope 119: 1439–1443. doi: 10.1002/lary.20532
[21]  Ge PJ, French LC, Ohno T, Sealer DL, Rousseau B (2009) Model of evoked rabbit phonation. Ann Otol Rhinol Laryngol 118: 51–55.
[22]  Swanson ER, Ohno T, Abdollahian D, Garrett CG, Rousseau B (2010) Effects of raised intensity phonation on inflammatory mediator gene expression in normal rabbit vocal fold. Otolaryngol Head Neck Surg 143: 567–572. doi: 10.1016/j.otohns.2010.04.264
[23]  Jerome WG, Lewis JC, Taylor RG, White MS (1983) Concurrent endothelial cell turnover and leukocyte margination in early atherosclerosis. Scan Electron Microsc Pt 3: 1453–1459.
[24]  Sivasankar M, Erickson E, Rosenblatt M, Branski RC (2010) Hypertonic challenge to porcine vocal folds. Otolaryngol Head Neck Surg 142: 79–84. doi: 10.1016/j.otohns.2009.09.011
[25]  Otsu N (1979) A threshold selection method from gray-lined histograms. IEEE Transactions of Systems, Man, and Cybernetics SMC-9: 62–66. doi: 10.1109/tsmc.1979.4310076
[26]  Julio G, Merindano MD, Canals M, Rallo M (2008) Imaging processing techniques to quantify microprojections on outer corneal epithelial cells. J Anat 212: 879–886. doi: 10.1111/j.1469-7580.2008.00898.x
[27]  Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. doi: 10.1038/nmeth.2089
[28]  Fisher KV, Ligon J, Sobecks JL, Roxe DM (2001) Phonatory effects of body fluid removal. J Speech Lang Hear Res 44: 354–367. doi: 10.1044/1092-4388(2001/029)
[29]  Milstone LM (2004) Epidermal desquamation. J Dermatol Sci 36: 131–140. doi: 10.1016/j.jdermsci.2004.05.004
[30]  Egelrud T (2000) Desquamation in the stratum corneum. Acta Derma Venereol 208: 44–45. doi: 10.1080/000155500750042853
[31]  Hazlett LD, Wells P, Spann B, Berk RS (1980) Epithelial desquamation in the adult-mouse cornea: A correlative TEM-SEM study. Ophthalmic Res 12: 315–323. doi: 10.1159/000265095
[32]  Sokol JL, Masur SK, Asbell PA, Wolosin JM (1990) Layer-by-layer desquamation of corneal epithelium and maturation of tear-facing membranes. Invest Ophthalmol Vis Sci 31: 294–304.
[33]  Ling C, Raasch JL, Welham NV (2011) E-cadherin and transglutaminase-1 epithelial barrier restoration precedes type IV collagen basement membrane reconstruction following vocal fold mucosal injury. Cells Tissues Organs 193: 158–169. doi: 10.1159/000318605

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133