[1] | Frey D, Schneider C, Xu L, Borg J, Spooren W, et al. (2000) Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases. J Neurosci 20: 2534–2542.
|
[2] | Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, et al. (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185: 232–240. doi: 10.1016/j.expneurol.2003.10.004
|
[3] | Schaefer AM, Sanes JR, Lichtman JW (2005) A compensatory subpopulation of motor neurons in a mouse model of amyotrophic lateral sclerosis. J Comp Neurol 490: 209–219 doi:10.1002/cne.20620.
|
[4] | Gould TW, Buss RR, Vinsant S, Prevette D, Sun W, et al. (2006) Complete Dissociation of Motor Neuron Death from Motor Dysfunction by Bax Deletion in a Mouse Model of ALS. J Neurosci 26: 8774–8786. doi: 10.1523/jneurosci.2315-06.2006
|
[5] | Kariya S, Park G-H, Maeno-Hikichi Y, Leykekhman O, Lutz C, et al. (2008) Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 17: 2552–2569. doi: 10.1093/hmg/ddn156
|
[6] | Kong L, Wang X, Choe DW, Polley M, Burnett BG, et al. (2009) Impaired Synaptic Vesicle Release and Immaturity of Neuromuscular Junctions in Spinal Muscular Atrophy Mice. J Neurosci 29: 842–851. doi: 10.1523/jneurosci.4434-08.2009
|
[7] | Ruiz R, Casa?as JJ, Torres-Benito L, Cano R, Tabares L (2010) Altered Intracellular Ca2+ Homeostasis in Nerve Terminals of Severe Spinal Muscular Atrophy Mice. J Neurosci 30: 849–857. doi: 10.1523/jneurosci.4496-09.2010
|
[8] | Imlach WL, Beck ES, Ben Jiwon Choi, Lotti F, Pellizzoni L, et al. (2012) SMN Is Required for Sensory-Motor Circuit Function in Drosophila. Cell 151: 427–439. doi: 10.1016/j.cell.2012.09.011
|
[9] | Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110: 385–397. doi: 10.1016/s0092-8674(02)00835-8
|
[10] | Miles GB, Yohn DC, Wichterle H, Jessell TM, Rafuse VF, et al. (2004) Functional Properties of Motoneurons Derived from Mouse Embryonic Stem Cells. J Neurosci 24: 7848–7858. doi: 10.1523/jneurosci.1972-04.2004
|
[11] | Soundararajan P, Miles GB, Rubin LL, Brownstone RM, Rafuse VF (2006) Motoneurons Derived from Embryonic Stem Cells Express Transcription Factors and Develop Phenotypes Characteristic of Medial Motor Column Neurons. J Neurosci 26: 3256–3268. doi: 10.1523/jneurosci.5537-05.2006
|
[12] | Guo X, Gonzalez M, Stancescu M, Vandenburgh HH, Hickman JJ (2011) Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials 32: 9602–9611. doi: 10.1016/j.biomaterials.2011.09.014
|
[13] | Umbach JA, Adams KL, Gundersen CB, Novitch BG (2012) Functional Neuromuscular Junctions Formed by Embryonic Stem Cell-Derived Motor Neurons. PLoS ONE 7: e36049. doi: 10.1371/journal.pone.0036049
|
[14] | Schuster CM, Davis GW, Fetter RD, Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron 17: 641–654. doi: 10.1016/s0896-6273(00)80197-x
|
[15] | Schuster CM, Davis GW, Fetter RD, Goodman CS (1996) Genetic dissection of structural and functional components of synaptic plasticity. II. Fasciclin II controls presynaptic structural plasticity. Neuron 17: 655–667. doi: 10.1016/s0896-6273(00)80198-1
|
[16] | Rafuse VF, Polo-Parada L, Landmesser LT (2000) Structural and functional alterations of neuromuscular junctions in NCAM-deficient mice. J Neurosci 20: 6529–6539.
|
[17] | Moscoso LM, Cremer H, Sanes JR (1998) Organization and reorganization of neuromuscular junctions in mice lacking neural cell adhesion molecule, tenascin-C, or fibroblast growth factor-5. J Neurosci 18: 1465–1477.
|
[18] | Cremer H, Lange R, Christoph A, Plomann M, Vopper G, et al. (1994) Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367: 455–459. doi: 10.1038/367455a0
|
[19] | Polo-Parada L, Bose CM, Plattner F, Landmesser LT (2004) Distinct Roles of Different Neural Cell Adhesion Molecule (NCAM) Isoforms in Synaptic Maturation Revealed by Analysis of NCAM 180 kDa Isoform-Deficient Mice. J Neurosci 24: 1852–1864. doi: 10.1523/jneurosci.4406-03.2004
|
[20] | Polo-Parada L, Bose CM, Landmesser LT (2001) Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 32: 815–828. doi: 10.1016/s0896-6273(01)00521-9
|
[21] | Polo-Parada L, Plattner F, Bose CM, Landmesser LT (2005) NCAM 180 Acting via a Conserved C-Terminal Domain and MLCK Is Essential for Effective Transmission with Repetitive Stimulation. Neuron 46: 917–931. doi: 10.1016/j.neuron.2005.05.018
|
[22] | Chipman PH, Franz CK, Nelson A, Schachner M, Rafuse VF (2010) Neural cell adhesion molecule is required for stability of reinnervated neuromuscular junctions. Eur J Neurosci 31: 238–249. doi: 10.1111/j.1460-9568.2009.07049.x
|
[23] | Rafuse VF, Landmesser LT (2000) The pattern of avian intramuscular nerve branching is determined by the innervating motoneuron and its level of polysialic acid. J Neurosci 20: 1056–1065.
|
[24] | Covault J, Sanes JR (1986) Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J Cell Biol 102: 716–730. doi: 10.1083/jcb.102.3.716
|
[25] | Covault J, Sanes JR (1985) Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sci USA 82: 4544–4548. doi: 10.1073/pnas.82.13.4544
|
[26] | Hata K, Polo-Parada L, Landmesser LT (2007) Selective Targeting of Different Neural Cell Adhesion Molecule Isoforms during Motoneuron Myotube Synapse Formation in Culture and the Switch from an Immature to Mature Form of Synaptic Vesicle Cycling. J Neurosci 27: 14481–14493. doi: 10.1523/jneurosci.3847-07.2007
|
[27] | Arber S, Han B, Mendelsohn M, Smith MA, Jessell TM, et al. (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23: 659–674. doi: 10.1016/s0896-6273(01)80026-x
|
[28] | Gaffield MA, Betz WJ (2007) Imaging synaptic vesicle exocytosis and endocytosis with FM dyes. Nat Protoc 1: 2916–2921. doi: 10.1038/nprot.2006.476
|
[29] | Rafuse VF, Landmesser LT (1996) Contractile activity regulates isoform expression and polysialylation of NCAM in cultured myotubes: involvement of Ca2+ and protein kinase C. J Cell Biol. 132: 969–983. doi: 10.1083/jcb.132.5.969
|
[30] | Chipman PH, Toma JS, Rafuse VF (2012) Generation of motor neurons from pluripotent stem cells. Prog Brain Res 201: 313–331. doi: 10.1016/b978-0-444-59544-7.00015-9
|
[31] | Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22: 389–442. doi: 10.1146/annurev.neuro.22.1.389
|
[32] | Diestel S, Schaefer D, Cremer H, Schmitz B (2007) NCAM is ubiquitylated, endocytosed and recycled in neurons. J Cell Sci 120: 4035–4049. doi: 10.1242/jcs.019729
|
[33] | Sugiura Y, Ko CP (1997) Novel modulatory effect of L-type calcium channels at newly formed neuromuscular junctions. J Neurosci 17: 1101–1111.
|
[34] | Newton AJ, Kirchhausen T, Murthy VN (2006) Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proc Natl Acad Sci USA 103: 17955–17960. doi: 10.1073/pnas.0606212103
|
[35] | Shetty A, Sytnyk V, Leshchyns'ka I, Puchkov D, Haucke V, et al. (2013) The Neural Cell Adhesion Molecule Promotes Maturation of the Presynaptic Endocytotic Machinery by Switching Synaptic Vesicle Recycling from Adaptor Protein 3 (AP-3)- to AP-2-Dependent Mechanisms. J Neurosci 33: 16828–16845. doi: 10.1523/jneurosci.2192-13.2013
|
[36] | Fischbach GD (1970) Synaptic potentials recorded in cell cultures of nerve and muscle. Science 169: 1331–1333. doi: 10.1126/science.169.3952.1331
|
[37] | Chow I, Poo MM (1985) Release of acetylcholine from embryonic neurons upon contact with muscle cell. J Neurosci 5: 1076–1082.
|
[38] | Dutton EK, Uhm CS, Samuelsson SJ, Schaffner AE, Fitzgerald SC, et al. (1995) Acetylcholine receptor aggregation at nerve-muscle contacts in mammalian cultures: induction by ventral spinal cord neurons is specific to axons. J Neurosci 15: 7401–7416.
|
[39] | Takahashi T, Nakajima Y, Hirosawa K, Nakajima S, Onodera K (2002) Structure and physiology of developing neuromuscular synapses in culture. J Neurosci 7: 473–481.
|
[40] | Zhang XH, Poo M-M (2002) Localized synaptic potentiation by BDNF requires local protein synthesis in the developing axon. Neuron 36: 675–688. doi: 10.1016/s0896-6273(02)01023-1
|
[41] | Marteyn A, Maury Y, Gauthier MM, Lecuyer C, Vernet R, et al. (2011) Mutant Human Embryonic Stem Cells Reveal Neurite and Synapse Formation Defects in Type 1 Myotonic Dystrophy. Cell Stem Cell 8: 434–444. doi: 10.1016/j.stem.2011.02.004
|
[42] | Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, et al. (2011) Conversion of Mouse and Human Fibroblasts into Functional Spinal Motor Neurons. Cell Stem Cell 9: 205–218. doi: 10.1016/j.stem.2011.07.014
|
[43] | Proszynski TJ, Gingras J, Valdez G, Krzewski K, Sanes JR (2009) Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proc Natl Acad Sci USA 106: 18373–18378. doi: 10.1073/pnas.0910391106
|
[44] | Misgeld T, Burgess RW, Lewis RM, Cunningham JM, Lichtman JW, et al. (2002) Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36: 635–648. doi: 10.1016/s0896-6273(02)01020-6
|
[45] | Zakharenko S, Chang S, O'Donoghue M, Popov SV (1999) Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis. J Cell Biol 144: 507–518. doi: 10.1083/jcb.144.3.507
|
[46] | Ooi CE, Dell'Angelica EC, Bonifacino JS (1998) ADP-ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Cell Biol 142: 391–402. doi: 10.1083/jcb.142.2.391
|
[47] | Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells —opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10: 915–929. doi: 10.1038/nrd3577
|
[48] | Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC (2008) Human Embryonic Stem Cell-Derived Motor Neurons Are Sensitive to the Toxic Effect of Glial Cells Carrying an ALS-Causing Mutation. Stem Cell 3: 637–648. doi: 10.1016/j.stem.2008.09.017
|
[49] | Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, et al. (2012) Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Pro Natl Acad Sci USA 109: 5803–5808. doi: 10.1073/pnas.1202922109
|
[50] | Serio A, Bilican B, Barmada SJ, Ando DM, Zhao C, et al. (2013) Astrocyte pathology and the absence of non-cell autonomy in an induced pluripotent stem cell model of TDP-43 proteinopathy. Proc Natl Acad Sci USA 110: 4697–4702. doi: 10.1073/pnas.1300398110
|
[51] | Yang YM, Gupta SK, Kim KJ, Powers BE, Cerqueira A, et al. (2013) A Small Molecule Screen in Stem-Cell-Derived Motor Neurons Identifies a Kinase Inhibitoras a Candidate Therapeutic for ALS. Stem Cell 12: 713–726. doi: 10.1016/j.stem.2013.04.003
|
[52] | Thomson SR, Wishart TM, Patani R, Chandran S, Gillingwater TH (2011) Using induced pluripotent stem cells (iPSC) to model human neuromuscular connectivity: promise or reality? J Anat 220: 122–130. doi: 10.1111/j.1469-7580.2011.01459.x
|