Macroautophagy (autophagy) is a bulk protein-degradation system ubiquitously conserved in eukaryotic cells. During autophagy, cytoplasmic components are enclosed in a membrane compartment, called an autophagosome. The autophagosome fuses with the vacuole/lysosome and is degraded together with its cargo. Because autophagy is important for the maintenance of cellular homeostasis by degrading unwanted proteins and organelles, identification of autophagosome cargo proteins (i.e., the targets of autophagy) will aid in understanding the physiological roles of autophagy. In this study, we developed a method for monitoring intact autophagosomes ex vivo by detecting the fluorescence of GFP-fused aminopeptidase I, the best-characterized selective cargo of autophagosomes in Saccharomyces cerevisiae. This method facilitated optimization of a biochemical procedure to fractionate autophagosomes. A combination of LC-MS/MS with subsequent statistical analyses revealed a list of autophagosome cargo proteins; some of these are selectively enclosed in autophagosomes and delivered to the vacuole in an Atg11-independent manner. The methods we describe will be useful for analyzing the mechanisms and physiological significance of Atg11-independent selective autophagy.
References
[1]
Onodera J, Ohsumi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280: 31582–31586. doi: 10.1074/jbc.m506736200
[2]
Suzuki K (2013) Selective autophagy in budding yeast. Cell Death Differ 20: 43–48. doi: 10.1038/cdd.2012.73
[3]
Baba M, Osumi M, Scott SV, Klionsky DJ, Ohsumi Y (1997) Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome. J Cell Biol 139: 1687–1695. doi: 10.1083/jcb.139.7.1687
[4]
Onodera J, Ohsumi Y (2004) Ald6p is a preferred target for autophagy in yeast, Saccharomyces cerevisiae. J Biol Chem 279: 16071–16076. doi: 10.1074/jbc.m312706200
[5]
Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10: 602–610. doi: 10.1038/ncb1723
[6]
Ossareh-Nazari B, Bonizec M, Cohen M, Dokudovskaya S, Delalande F, et al. (2010) Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy. EMBO Rep 11: 548–554. doi: 10.1038/embor.2010.74
[7]
Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, et al. (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147: 435–446. doi: 10.1083/jcb.147.2.435
[8]
Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, et al. (2001) Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 12: 3690–3702. doi: 10.1091/mbc.12.11.3690
[9]
Adams A, Gottschling DE, Kaiser CA, Stearns T (1998) Methods in yeast genetics: Cold Spring Harbor Laboratory Press.
[10]
Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21: 947–962.
[11]
Suzuki K, Kondo C, Morimoto M, Ohsumi Y (2010) Selective transport of α-mannosidase by autophagic pathways: identification of a novel receptor, Atg34p. J Biol Chem 285: 30019–30025. doi: 10.1074/jbc.m110.143511
[12]
Suzuki K, Morimoto M, Kondo C, Ohsumi Y (2011) Selective autophagy regulates insertional mutagenesis by the Ty1 retrotransposon in Saccharomyces cerevisiae. Dev Cell 21: 358–365. doi: 10.1016/j.devcel.2011.06.023
[13]
Suzuki K, Kamada Y, Ohsumi Y (2002) Studies of cargo delivery to the vacuole mediated by autophagosomes in Saccharomyces cerevisiae. Dev Cell 3: 815–824. doi: 10.1016/s1534-5807(02)00359-3
[14]
Peisker K, Braun D, Wolfle T, Hentschel J, Funfschilling U, et al. (2008) Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Mol Biol Cell 19: 5279–5288. doi: 10.1091/mbc.e08-06-0661
[15]
Kirchberger J, Edelmann A, Kopperschlager G, Heinisch JJ (1999) A single point mutation leads to an instability of the hetero-octameric structure of yeast phosphofructokinase. Biochem J 341: 15–23. doi: 10.1042/0264-6021:3410015
[16]
Baba M, Takeshige K, Baba N, Ohsumi Y (1994) Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 124: 903–913. doi: 10.1083/jcb.124.6.903
[17]
Shintani T, Huang WP, Stromhaug PE, Klionsky DJ (2002) Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev Cell 3: 825–837. doi: 10.1016/s1534-5807(02)00373-8
[18]
Liu H, Sadygov RG, Yates JR III (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76: 4193–4201. doi: 10.1021/ac0498563
[19]
Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, et al. (2001) Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 153: 381–396. doi: 10.1083/jcb.153.2.381
[20]
Noda T, Matsuura A, Wada Y, Ohsumi Y (1995) Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 210: 126–132. doi: 10.1006/bbrc.1995.1636
[21]
Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, et al. (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349: 275–280. doi: 10.1016/0014-5793(94)00672-5
[22]
Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119: 301–311. doi: 10.1083/jcb.119.2.301
[23]
Egner R, Thumm M, Straub M, Simeon A, Schuller HJ, et al. (1993) Tracing intracellular proteolytic pathways. Proteolysis of fatty acid synthase and other cytoplasmic proteins in the yeast Saccharomyces cerevisiae. J Biol Chem 268: 27269–27276.
[24]
Knaevelsrud H, Simonsen A (2010) Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584: 2635–2645. doi: 10.1016/j.febslet.2010.04.041
[25]
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, et al. (2000) A ubiquitin-like system mediates protein lipidation. Nature 408: 488–492. doi: 10.1038/35044114
[26]
Robinson JS, Klionsky DJ, Banta LM, Emr SD (1988) Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 8: 4936–4948.