全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Prenatal Cocaine Exposure Uncouples mGluR1 from Homer1 and Gq Proteins

DOI: 10.1371/journal.pone.0091671

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cocaine exposure during gestation causes protracted neurobehavioral changes consistent with a compromised glutamatergic system. Although cocaine profoundly disrupts glutamatergic neurotransmission and in utero cocaine exposure negatively affects metabotropic glutamate receptor-type 1 (mGluR1) activity, the effect of prenatal cocaine exposure on mGluR1 signaling and the underlying mechanism responsible for the prenatal cocaine effect remain elusive. Using brains of the 21-day-old (P21) prenatal cocaine-exposed rats, we show that prenatal cocaine exposure uncouples mGluR1s from their associated synaptic anchoring protein, Homer1 and signal transducer, Gq/11 proteins leading to markedly reduced mGluR1-mediated phosphoinositide hydrolysis in frontal cortex (FCX) and hippocampus. This prenatal cocaine-induced effect is the result of a sustained protein kinase C (PKC)-mediated phosphorylation of mGluR1 on the serine residues. In support, phosphatase treatment of prenatal cocaine-exposed tissues restores whereas PKC-mediated phosphorylation of saline-treated synaptic membrane attenuates mGluR1 coupling to both Gq/11 and Homer1. Expression of mGluR1, Homer1 or Gα proteins was not altered by prenatal cocaine exposure. Collectively, these data indicate that prenatal cocaine exposure triggers PKC-mediated hyper-phosphorylation of the mGluR1 leading to uncoupling of mGluR1 from its signaling components. Hence, blockade of excessive PKC activation may alleviate abnormalities in mGluR1 signaling and restores mGluR1-regulated brain functions in prenatal cocaine-exposed brains.

References

[1]  Dow-Edwards DL (1991) Cocaine effects on fetal development: a comparison of clinical and animal research findings. Neurotoxicol Teratol 13: 347–352. doi: 10.1016/0892-0362(91)90082-8
[2]  Harvey JA, Romano AG, Gabriel M, Simansky KJ, Du W, et al. (2001) Effects of prenatal exposure to cocaine on the developing brain: anatomical, chemical, physiological and behavioral consequences. Neurotox Res 1: 117–143. doi: 10.1007/bf03033234
[3]  Murphy EH, Chon J, Darvish-Sefat F, Diven K, Schumann M, et al. (1997) Effects of cocaine-induced seizures during pregnancy in the rabbit. Physiol Behav. 62: 597–604.
[4]  Ghasemzadeh MB, Permenter LK, Lake R, Worley PF, Kalivas PW (2003) Homer1 proteins and AMPA receptors modulate cocaine-induced behavioural plasticity. Eur J Neurosci 18: 1645–1651. doi: 10.1046/j.1460-9568.2003.02880.x
[5]  Yablonsky-Alter E, Gashi E, Lidsky T I, Wang HY, Banerjee SP (2005) Clozapine protection against gestational cocaine-induced neurochemical abnormalities. J Pharmacol Exp Ther 312: 297–302. doi: 10.1124/jpet.104.074062
[6]  Bakshi K, Gennaro S, Chan CY, Kosciuk M, Liu JJ, et al. (2009) Prenatal cocaine reduces AMPA receptor synaptic expression through hyperphosphorylation of the synaptic anchoring protein GRIP. J Neurosci 29: 6308–6319. doi: 10.1523/jneurosci.5485-08.2009
[7]  Bellone C, Mameli M, Lüscher C (2011) In utero exposure to cocaine delays postnatal synaptic maturation of glutamatergic transmission in the VTA. Nat Neurosci 14: 1439–1446. doi: 10.1038/nn.2930
[8]  Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29: 83–120. Review.
[9]  Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl) 179: 4–29. doi: 10.1007/s00213-005-2200-z
[10]  Xiao B, Tu JC, Petralia RS, Yuan JP, Doan A, et al. (1998) Homer regulates the association of group 1 metabotropic glutamate receptors with multivalent complexes of homer-related, synaptic proteins. Neuron 4: 707–716. doi: 10.1016/s0896-6273(00)80588-7
[11]  Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, et al. (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23: 569–582. doi: 10.1016/s0896-6273(00)80809-0
[12]  Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, et al. (1998) Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Neuron 21: 717–726. doi: 10.1016/s0896-6273(00)80589-9
[13]  Shigemoto R, Kinoshita A, Wada E, Nomura S, Ohishi H, et al. (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17: 7503–7522.
[14]  Price CJ, Karayannis T, Pál BZ, Capogna M (2005) Group II and III mGluRs-mediated presynaptic inhibition of EPSCs recorded from hippocampal interneurons of CA1 stratum lacunosum moleculare. Neuropharmacology 49 Suppl 145–56. doi: 10.1016/j.neuropharm.2005.05.009
[15]  Romano AG, Kachelries WJ, Simansky KJ, Harvey JA (1995) Intrauterine exposure to cocaine produces a modality-specific acceleration of classical conditioning in adult rabbits. Pharmacol Biochem Behav 52: 415–420. doi: 10.1016/0091-3057(95)00129-k
[16]  Morrow CE, Culbertson JL, Accornero VH, Xue L, Anthony JC, et al. (2006) Learning disabilities and intellectual functioning in school-aged children with prenatal cocaine exposure. Dev Neuropsychol 30: 905–931. doi: 10.1207/s15326942dn3003_8
[17]  Swanson CJ, Baker DA, Carson D, Worley PF, Kalivas PW (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J Neurosci 21: 9043–9052.
[18]  Szumlinski KK, Dehoff MH, Kang SH, Frys KA, Lominac KD, et al. (2004) Homer proteins regulate sensitivity to cocaine. Neuron 43: 401–413. doi: 10.1016/j.neuron.2004.07.019
[19]  Wang HY, Runyan S, Yadin E, Friedman E (1995) Prenatal exposure to cocaine selectively affects D1 dopamine receptor-mediated activation of striatal Gs proteins. J Pharmacol Exp Ther 273: 492–498.
[20]  Jones LB, Stanwood GD, Reinoso BS, Washington RA, Wang HY, et al. (2000) In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons. J Neurosci 20: 4606–4614.
[21]  Holson RR, Pearce B (1992) Principles and pitfalls in the analysis of prenatal treatment effect in multiparous species. Neurotoxicol Teratol 14: 221–228. doi: 10.1016/0892-0362(92)90020-b
[22]  Wang HY, Yue T-L, Feuerstein G, Friedman E (1994) Platelet-activating factor: diminished acetylcholine release from rat brain is mediated by a Gi protein. J Neurochem 63: 1720–1725. doi: 10.1046/j.1471-4159.1994.63051720.x
[23]  Wang HY, Lee DHS, Wild KD, Shank RP (1999) Galanin inhibits acetylcholine release from rat cerebral cortex via a pertussis toxin-sensitive Gi protein. Neuropeptides 33: 197–205. doi: 10.1054/npep.1999.0024
[24]  Wang HY, Friedman E, Olmstead C, Burns LH (2005) Ultra-low-dose naloxone suppresses Opioid tolerance, dependence and associated changes in Mu opioid receptor – G protein coupling and Gβγ signaling. Neurosci 135: 247–261. doi: 10.1016/j.neuroscience.2005.06.003
[25]  Zhen X, Goswami S, Friedman E (2005) The role of the phosphoinositol-linked D1 dopamine receptor in the pharmacology of SKF83959. Pharmacol Biochem Behav 80: 597–601. doi: 10.1016/j.pbb.2005.01.016
[26]  Zhen X, Torres C, Wang HY, Friedman E (2001) Prenatal exposure to cocaine disrupts D1A dopamine receptor function via selective inhibition of protein phosphatase 1 pathway in rabbit frontal cortex. J Neurosci 21: 9160–9167.
[27]  Mayes LC, Bornstein MH, Chawarska K, Granger RH (1995) Information processing and developmental assessments in 3-month-old infants exposed prenatally to cocaine. Pediatrics 95: 539–545. doi: 10.1016/s0163-6383(96)90181-2
[28]  Romano AG, Harvey JA (1996) Prenatal exposure to cocaine disrupts discrimination learning in adult rabbits. Pharmacol Biochem Behav 53: 617–621. doi: 10.1016/0091-3057(95)02061-6
[29]  Delaney-Black V, Covington C, Ostrea E Jr, Romero A, Baker D, et al. (1996) Prenatal cocaine and neonatal outcome: evaluation of dose-response relationship. Pediatrics 98: 735–740.
[30]  Bandstra ES, Morrow CE, Vogel AL, Fifer RC, Ofir AY, et al. (2002) Longitudinal influence of prenatal cocaine exposure on child language functioning. Neurotoxicol Teratol 24: 297–308. doi: 10.1016/s0892-0362(02)00192-7
[31]  Ronesi JA, Huber KM (2008) Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J Neurosci 28: 543–547. doi: 10.1523/jneurosci.5019-07.2008
[32]  Stanwood GD, Levitt P (2003) Repeated i.v. cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring Neurosci 122: 579–583. doi: 10.1016/j.neuroscience.2003.08.029
[33]  Thompson BL, Levitt P, Stanwood GD (2005) Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behav Brain Res 164: 107–116. doi: 10.1016/j.bbr.2005.06.010
[34]  Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, et al. (2004) Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306: 882–884. doi: 10.1126/science.1100021
[35]  Wang HY, Yadin E, Friedman E (1993) Prenatal exposure to cocaine produces sustained subcellular redistribution of protein kinase C (PKC). Soc Neurosci Abstr 19: 757.11.
[36]  Romano AG, Harvey JA (1996) Prenatal exposure to cocaine disrupts discrimination learning in adult rabbits. Pharmacol Biochem Behav 53: 617–621. doi: 10.1016/0091-3057(95)02061-6
[37]  Friedman E, Yadin E, Wang HY (1996) Effect of prenatal cocaine on dopamine receptor-G protein coupling in mesocortical regions of the rabbit brain. Neurosci 70: 739–747. doi: 10.1016/s0306-4522(96)83011-9
[38]  Wang XH, Levitt P, Grayson DR, Murphy EH (1995) Intrauterine cocaine exposure of rabbits: persistent elevation of GABA-immunoreactive neurons in anterior cingulated cortex but not visual cortex. Brain Res 689: 32–46. doi: 10.1016/0006-8993(95)00528-x
[39]  Booze RM, Wallace DR, Silvers JM, Strupp BJ, Snow DM, et al. (2006) Prenatal cocaine exposure alters alpha2 receptor expression in adolescent rats. BMC Neurosci 7: 33.
[40]  Bakshi K, Kosciuk M, Nagele R, Friedman E, Wang HY (2011) Prenatal cocaine exposure increases synaptic membrane localization of a neuronal RasGEF, GRASP-1 through hyperphosphorylation of synaptic AMPAR anchoring protein, GRIP. PLoS ONE 6(9): e25019. doi: 10.1371/journal.pone.0025019
[41]  Hahn CG, Umapathy, Wang HY, Koneru R, Levinson DF, et al. (2005) Lithium and valproic acid treatments reduce PKC activation and receptor-G protein coupling in platelets of bipolar manic patients. J Psychiatr Res 39: 355–363. doi: 10.1016/j.jpsychires.2004.10.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133