[1] | Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79(2): 387–423.
|
[2] | Davis MJ (2012) Perspective: physiological role(s) of the vascular myogenic response. Microcirculation 19(2): 99–114. doi: 10.1111/j.1549-8719.2011.00131.x
|
[3] | Howitt L, Sandow SL, Grayson TH, Ellis ZE, Morris MJ, et al. (2011) Differential effects of diet-induced obesity on BKCa {beta}1-subunit expression and function in rat skeletal muscle arterioles and small cerebral arteries. Am J Physiol Heart Circ Physiol 301(1): H29–40. doi: 10.1152/ajpheart.00134.2011
|
[4] | Hein TW, Potts LB, Xu W, Yuen JZ, Kuo L (2012) Temporal development of retinal arteriolar endothelial dysfunction in porcine type 1 diabetes. Invest Ophthalmol Vis Sci 53(13): 7943–9. doi: 10.1167/iovs.12-11005
|
[5] | Burke M, Pabbidi MR, Farley J, Roman RJ (2013) Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol (in press) [Epub ahead of print].
|
[6] | Izzard AS, Heagerty AM (2013) Myogenic properties of brain and cardiac vessels and their relation to disease. Curr Vasc Pharmacol (in press) [Epub ahead of print].
|
[7] | Palomares SM, Cipolla MJ (2013) Myogenic tone as a therapeutic target for ischemic stroke. Curr Vasc Pharmacol (in press) [Epub ahead of print].
|
[8] | Czikora á, Lizanecz E, Bakó P, Rutkai I, Ruzsnavszky F, et al. (2012) Structure-activity relationships of vanilloid receptor agonists for arteriolar TRPV1. Br J Pharmacol 165(6): 1801–12. doi: 10.1111/j.1476-5381.2011.01645.x
|
[9] | Fike CD, Kaplowitz M, Zhang Y, Dantuma M, Madden JA (2012) Effect of a phosphodiesterase 5 inhibitor on pulmonary and cerebral arteries of newborn piglets with chronic hypoxia-induced pulmonary hypertension. Neonatology 101(1): 28–39. doi: 10.1159/000326270
|
[10] | Chan SL, Sweet JG, Cipolla MJ (2013) Treatment for cerebral small vessel disease: effect of relaxin on the function and structure of cerebral parenchymal arterioles during hypertension. FASEB J (in press) [Epub ahead of print].
|
[11] | Tanano I, Nagaoka T, Omae T, Ishibazawa A, Kamiya T, et al. (2013) Dilation of porcine retinal arterioles to cilostazol: roles of eNOS phosphorylation via cAMP/protein kinase A and AMP-activated protein kinase and potassium channels. Invest Ophthalmol Vis Sci 54(2): 1443–9. doi: 10.1167/iovs.12-10115
|
[12] | Simons MA, Bastian BV, Bray BE, Dedrickson DR (1987) Comparison of observer and videodensitometric measurements of simulated coronary artery stenoses. Invest Radiol 22: 562–8. doi: 10.1097/00004424-198707000-00006
|
[13] | Gokina NI, Osol G (2002) Actin cytoskeletal modulation of pressure-induced depolarization and Ca2+ influx in cerebral arteries. Am J Physiol Heart Circ Physiol 282(4): H1410–20.
|
[14] | Zhong XZ, Harhun MI, Olesen SP, Ohya S, Moffatt JD, et al. (2010) Participation of KCNQ (Kv7) potassium channels in myogenic control of cerebral arterial diameter. J Physiol 588(Pt 17): 3277–93. doi: 10.1113/jphysiol.2010.192823
|
[15] | Hannah RM, Dunn KM, Bonev AD, Nelson MT (2011) Endothelial SK(Ca) and IK(Ca) channels regulate brain parenchymal arteriolar diameter and cortical cerebral blood flow. J Cereb Blood Flow Metab 31(5): 1175–86. doi: 10.1038/jcbfm.2010.214
|
[16] | Dabertrand F, Nelson MT, Brayden JE (2012) Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels. Circ Res 110(2): 285–94. doi: 10.1161/circresaha.111.258145
|
[17] | Kim S, Kong RL, Popel AS, Intaglietta M, Johnson PC (2006) A computer-based method for determination of the cell-free layer width in microcirculation. Microcirculation 13(3): 199–207. doi: 10.1080/10739680600556878
|
[18] | Davis MJ (2005) An improved, computer-based method to automatically track internal and external diameter of isolated microvessels. Microcirculation 12(4): 361–72. doi: 10.1080/10739680590934772
|
[19] | Davis MJ, Zawieja DC, Gashev AA (2006) Automated measurement of diameter and contraction waves of cannulated lymphatic microvessels. Lymphat Res Biol 4(1): 3–10. doi: 10.1089/lrb.2006.4.3
|
[20] | Nepiyushchikh ZV, Chakraborty S, Wang W, Davis MJ, Zawieja DC, et al. (2011) Differential effects of myosin light chain kinase inhibition on contractility, force development and myosin lightchain 20 phosphorylation of rat cervical and thoracic duct lymphatics. J Physiol 589(Pt 22): 5415–29. doi: 10.1113/jphysiol.2011.218446
|
[21] | Chan YC, Leung FP, Wong WT, Tian XY, Yung LM, et al. (2010) Therapeutically relevant concentrations of raloxifene dilate pressurized rat resistance arteries via calcium-dependent endothelial nitric oxide synthase activation. Arterioscler Thromb Vasc Biol 30(5): 992–9. doi: 10.1161/atvbaha.110.203935
|
[22] | Chan YC, Leung FP, Tian XY, Yung LM, Lau CW, et al. (2012) Raloxifene improves vascular reactivity in pressurized septal coronary arteries of ovariectomized hamsters fed cholesterol diet. Pharmacol Res 65(2): 182–8. doi: 10.1016/j.phrs.2011.09.010
|
[23] | Gr?nde G, Nilsson E, Edvinsson L (2013) Comparison of responses to vasoactive drugs in human and rat cerebral arteries using myography andpressurized cerebral artery method. Cephalalgia 33(3): 152–9. doi: 10.1177/0333102412468340
|
[24] | Jackson WF (2000) Ion Channels and Vascular Tone. Hypertension 35(1 Pt 2): 173–8. doi: 10.1161/01.hyp.35.1.173
|
[25] | McGahon MK, Dawicki JM, Arora A, Simpson DA, Gardiner TA, et al. (2007) Kv1.5 is a major component underlying the A-type potassium current in retinal arteriolar smooth muscle. Am J Physiol Heart Circ Physiol 292(2): H1001–8. doi: 10.1152/ajpheart.01003.2006
|
[26] | Scholfield CN, McGeown JG, Curtis TM (2007) Cellular physiology of retinal and choroidal arteriolar smooth muscle cells. Microcirculation 14: 11–24. doi: 10.1080/10739680601072115
|
[27] | Hinds K, Monaghan KP, Frolund B, McGeown JG, Curtis T (2013) GABAergic control of arteriolar diameter in the rat retina. Invest Ophthalmol Vis Sci (in press) [Epub ahead of print].
|
[28] | McGahon MK, Dash DP, Arora A, Wall N, Dawicki J, et al. (2007) Diabetes downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle. Circ Res 100: 703–11. doi: 10.1161/01.res.0000260182.36481.c9
|
[29] | Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9: 62–6. doi: 10.1109/tsmc.1979.4310076
|
[30] | Al-Diri B, Hunter A, Steel D (2009) An active contour model for segmenting and measuring retinal vessels. IEEE Trans Med Imaging 28(9): 1488–97. doi: 10.1109/tmi.2009.2017941
|
[31] | Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476): 307–10. doi: 10.1016/s0140-6736(86)90837-8
|
[32] | Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2): 135–60. doi: 10.1191/096228099673819272
|
[33] | Krouwer JS (2008) Why Bland-Altman plots should use X, not (Y+X)/2 when X is a reference method. Stat Med 27(5): 778–80. doi: 10.1002/sim.3086
|
[34] | Bandopadhyay R, Orte C, Lawrenson JG, Reid AR, De Silva S, et al. (2001) Contractile proteins in pericytes at the blood-brain and blood-retinal barriers. J Neurocytol 30(1): 35–44.
|
[35] | Hughes S, Chan-Ling T (2004) Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo. Invest Ophthalmol Vis Sci 45(8): 2795–806. doi: 10.1167/iovs.03-1312
|
[36] | Pournaras CJ, Rungger-Brandle E, Riva CE, Hardarson SH, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27(3): 284–330. doi: 10.1016/j.preteyeres.2008.02.002
|
[37] | Puro DG (2012) Retinovascular physiology and pathophysiology: new experimental approach/new insights. Prog Retin Eye Res 31(3): 258–70. doi: 10.1016/j.preteyeres.2012.01.001
|