全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Role of Inflammation Resolution Speed in Airway Smooth Muscle Mass Accumulation in Asthma: Insight from a Theoretical Model

DOI: 10.1371/journal.pone.0090162

Full-Text   Cite this paper   Add to My Lib

Abstract:

Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.

References

[1]  Kariyawasam HH, Aizen M, Barkans J, Robinson DS, Kay AB (2007) Remodeling and airway hyperresponsiveness but not cellular inflammation persist after allergen challenge in asthma. Am J Respir Crit Care Med 175: 896–904. doi: 10.1164/rccm.200609-1260oc
[2]  Mauad T, Bel EH, Sterk PJ (2007) Asthma therapy and airway remodeling. J Allergy Clin Immunol 120: 997–1009. doi: 10.1016/j.jaci.2007.06.031
[3]  Bentley JK, Hershenson MB (2008) Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration. Proc Am Thorac Soc 5: 89–96. doi: 10.1513/pats.200705-063vs
[4]  James AL, Elliot JG, Jones RL, Carroll ML, Mauad T, et al. (2012) Airway smooth muscle hypertrophy and hyperplasia in asthma. Am J Respir Crit Care Med 185: 1058–1064. doi: 10.1164/rccm.201110-1849oc
[5]  Johnson PRA, Roth M, Tamm M, Hughes M, Ge Q, et al. (2001) Airway smooth muscle cell proliferation is increased in asthma. Am J Respir Crit Care Med 164: 474–477. doi: 10.1164/ajrccm.164.3.2010109
[6]  Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, et al. (2004) Proliferative aspects of airway smooth muscle. J Allergy Clin Immunol 114: S2–S17. doi: 10.1016/j.jaci.2004.04.039
[7]  Kaur D, Hollins F, Saunders R, Woodman L, Sutcliffe A, et al. (2010) Airway smooth muscle proliferation and survival is not modulated by mast cells. Clin Exp Allergy 40: 279–288. doi: 10.1111/j.1365-2222.2009.03423.x
[8]  Brightling CE, Bradding P, Symon FA, Holgate ST, Wardlaw AJ, et al. (2002) Mast-cell infiltration of airway smooth muscle in asthma. N Engl J Med 346: 1699–1705. doi: 10.1056/nejmoa012705
[9]  Baker M, Billington C, Chapman LAC, Chernyavsky IL, Croisier H, et al.. (2011) Mathematical modelling of airway smooth muscle cell proliferation and apoptosis in asthma. Reading: Mathematics-in-Medicine Study Group Report. 31 p.
[10]  Holmes AM, Solari R, Holgate ST (2011) Animal models of asthma: value, limitations and opportunities for alternative approaches. Drug Discov Today 16: 659–670. doi: 10.1016/j.drudis.2011.05.014
[11]  Contoli M, Bousquet J, Fabbri LM, Magnussen H, Rabe KF, et al. (2010) The small airways and distal lung compartment in asthma and COPD: a time for reappraisal. Allergy 65: 141–151. doi: 10.1111/j.1398-9995.2009.02242.x
[12]  Halayko AJ, Camoretti-Mercado B, Forsythe SM, Vieira JE, Mitchell RW, et al. (1999) Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. Am J Physiol - Lung Cell Mol Physiol 276: L197–L206.
[13]  Dekkers BG, Bos IST, Zaagsma J, Meurs H (2012) Functional consequences of human airway smooth muscle phenotype plasticity. Br J Pharmacol 166: 359–367. doi: 10.1111/j.1476-5381.2011.01773.x
[14]  Markwick LJ, Clements D, Roberts ME, Ceresa CC, Knox AJ, et al. (2012) CCR3 induced-p42/44 MAPK activation protects against staurosporine induced-DNA fragmentation but not apoptosis in airway smooth muscle cells. Clin Exp Allergy 42: 1040–1050. doi: 10.1111/j.1365-2222.2012.04019.x
[15]  Grainge CL, Lau LCK, Ward JA, Dulay V, Lahiff G, et al. (2011) Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med 364: 2006–15. doi: 10.1056/nejmoa1014350
[16]  Tatler AL, John AE, Jolly L, Habgood A, Porte J, et al. (2011) Integrin αvβ5-mediated TGF-β activation by airway smooth muscle cells in asthma. J Immunol 187: 6094–107. doi: 10.4049/jimmunol.1003507
[17]  Alrifai M, Marsh LM, Dicke T, K?l?? A, Conrad ML, et al. (2014) Compartmental and temporal dynamics of chronic inflammation and airway remodelling in a chronic asthma mouse model. PLoS ONE 9: e85839. doi: 10.1371/journal.pone.0085839
[18]  Leclere M, Lavoie-Lamoureux A, Joubert P, Relave F, Setlakwe EL, et al. (2012) Corticosteroids and antigen avoidance decrease airway smooth muscle mass in an equine asthma model. Am J Respir Cell Mol Biol 47: 589–596. doi: 10.1165/rcmb.2011-0363oc
[19]  Alkhouri H, Hollins F, Moir LM, Brightling CE, Armour CL, et al. (2011) Human lung mast cells modulate the functions of airway smooth muscle cells in asthma. Allergy 66: 1231–1241. doi: 10.1111/j.1398-9995.2011.02616.x
[20]  Hirota JA, Nguyen TT, Schaafsma D, Sharma P, Tran T (2009) Airway smooth muscle in asthma: Phenotype plasticity and function. Pulm Pharmacol Ther 22: 370–378. doi: 10.1016/j.pupt.2008.12.004
[21]  Hirst SJ, Twort CHC, Lee TH (2000) Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol 23: 335–344. doi: 10.1165/ajrcmb.23.3.3990
[22]  Louis R, Sele J, Henket M, Cataldo D, Bettiol J, et al. (2002) Sputum eosinophil count in a large population of patients with mild to moderate steroid-naive asthma: distribution and relationship with methacholine bronchial hyperresponsiveness. Allergy 57: 907–912. doi: 10.1034/j.1398-9995.2002.23608.x
[23]  James AL, Bai TR, Mauad T, Abramson MJ, Dolhnikoff M, et al. (2009) Airway smooth muscle thickness in asthma is related to severity but not duration of asthma. Eur Respir J 34: 1040–5. doi: 10.1183/09031936.00181608
[24]  Payne DNR, Rogers AV, Adelroth E, Bandi V, Guntupalli KK, et al. (2003) Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med 167: 78–82. doi: 10.1164/rccm.200205-414oc
[25]  Bergeron C, Hauber HP, Gotfried M, Newman K, Dhanda R, et al. (2005) Evidence of remodeling in peripheral airways of patients with mild to moderate asthma: effect of hydrofluoroalkane-flunisolide. J Allergy Clin Immunol 116: 983–9. doi: 10.1016/j.jaci.2005.07.029
[26]  Allen JE, Bischof RJ, Sucie Chang H-Y, Hirota JA, Hirst SJ, et al. (2009) Animal models of airway inflammation and airway smooth muscle remodelling in asthma. Pulm Pharmacol Ther 22: 455–465. doi: 10.1016/j.pupt.2009.04.001
[27]  Tattersfield AE, Postma DS, Barnes PJ, Svensson K, Bauer C-A, et al. (1999) Exacerbations of asthma. Am J Respir Crit Care Med 160: 594–599. doi: 10.1164/ajrccm.160.2.9811100
[28]  ten Brinke A, Sterk PJ, Masclee AAM, Spinhoven P, Schmidt JT, et al. (2005) Risk factors of frequent exacerbations in difficult-to-treat asthma. Eur Respir J 26: 812–818. doi: 10.1183/09031936.05.00037905
[29]  Brook BS, Peel SE, Hall IP, Politi AZ, Sneyd J, et al. (2010) A biomechanical model of agonist-initiated contraction in the asthmatic airway. Respir Physiol Neurobiol 170: 44–58. doi: 10.1016/j.resp.2009.11.006
[30]  Byrne H, Preziosi L (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol 20: 341–366. doi: 10.1093/imammb/20.4.341
[31]  Moulton DE, Goriely A (2011) Possible role of differential growth in airway wall remodeling in asthma. J Appl Physiol 110: 1003–1012. doi: 10.1152/japplphysiol.00991.2010
[32]  Wegmann M, Fehrenbach H, Fehrenbach A, Held T, Schramm C, et al. (2005) Involvement of distal airways in a chronic model of experimental asthma. Clin Exp Allergy 35: 1263–1274. doi: 10.1111/j.1365-2222.2005.02306.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133