全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Transcriptomic Analysis of the Effects of a Fish Oil Enriched Diet on Murine Brains

DOI: 10.1371/journal.pone.0090425

Full-Text   Cite this paper   Add to My Lib

Abstract:

The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (~40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation—the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result-driven repositioning of fish oil utilization may revitalize its therapeutic efficacy.

References

[1]  Deckelbaum RJ, Torrejon C (2012) The omega-3 fatty acid nutritional landscape: health benefits and sources. J Nutr 142: 587S–591S. doi: 10.3945/jn.111.148080
[2]  Seo T, Blaner WS, Deckelbaum RJ (2005) Omega-3 fatty acids: molecular approaches to optimal biological outcomes. Curr Opin Lipidol 16: 11–18. doi: 10.1097/00041433-200502000-00004
[3]  Amminger GP, Schafer MR, Papageorgiou K, Klier CM, Cotton SM, et al. (2010) Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 67: 146–154. doi: 10.1001/archgenpsychiatry.2009.192
[4]  Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Hwang BS, et al. (2012) Omega-3 supplementation lowers inflammation in healthy middle-aged and older adults: a randomized controlled trial. Brain Behav Immun 26: 988–995. doi: 10.1016/j.bbi.2012.05.011
[5]  Im DS (2012) Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog Lipid Res 51: 232–237. doi: 10.1016/j.plipres.2012.02.003
[6]  Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R (2011) Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun 25: 1725–1734. doi: 10.1016/j.bbi.2011.07.229
[7]  Ho L, van Leeuwen R, Witteman JC, van Duijn CM, Uitterlinden AG, et al. (2011) Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and omega-3 fatty acids: the Rotterdam study. Arch Ophthalmol 129: 758–766. doi: 10.1001/archophthalmol.2011.141
[8]  Tuo J, Ross RJ, Herzlich AA, Shen D, Ding X, et al. (2009) A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration. Am J Pathol 175: 799–807. doi: 10.2353/ajpath.2009.090089
[9]  Hooijmans CR, Pasker-de Jong PC, de Vries RB, Ritskes-Hoitinga M (2012) The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer's pathology in animal models of Alzheimer's disease: a systematic review and meta-analysis. J Alzheimers Dis 28: 191–209.
[10]  Jicha GA, Markesbery WR (2010) Omega-3 fatty acids: potential role in the management of early Alzheimer's disease. Clin Interv Aging 5: 45–61. doi: 10.2147/cia.s5231
[11]  Bousquet M, Calon F, Cicchetti F (2011) Impact of omega-3 fatty acids in Parkinson's disease. Ageing Res Rev 10: 453–463. doi: 10.1016/j.arr.2011.03.001
[12]  da Silva TM, Munhoz RP, Alvarez C, Naliwaiko K, Kiss A, et al. (2008) Depression in Parkinson's disease: a double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. J Affect Disord 111: 351–359. doi: 10.1016/j.jad.2008.03.008
[13]  Lesperance F, Frasure-Smith N, St-Andre E, Turecki G, Lesperance P, et al. (2011) The efficacy of omega-3 supplementation for major depression: a randomized controlled trial. J Clin Psychiatry 72: 1054–1062. doi: 10.4088/jcp.10m05966blu
[14]  Logan AC (2004) Omega-3 fatty acids and major depression: a primer for the mental health professional. Lipids Health Dis 3: 25.
[15]  Ross BM (2009) Omega-3 polyunsaturated fatty acids and anxiety disorders. Prostaglandins Leukot Essent Fatty Acids 81: 309–312. doi: 10.1016/j.plefa.2009.10.004
[16]  Brenna JT, Diau GY (2007) The influence of dietary docosahexaenoic acid and arachidonic acid on central nervous system polyunsaturated fatty acid composition. Prostaglandins Leukot Essent Fatty Acids 77: 247–250. doi: 10.1016/j.plefa.2007.10.016
[17]  Cole GM, Ma QL, Frautschy SA (2009) Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids 81: 213–221. doi: 10.1016/j.plefa.2009.05.015
[18]  Duffy EM, Meenagh GK, McMillan SA, Strain JJ, Hannigan BM, et al. (2004) The clinical effect of dietary supplementation with omega-3 fish oils and/or copper in systemic lupus erythematosus. J Rheumatol 31: 1551–1556.
[19]  Matsuoka Y (2011) Clearance of fear memory from the hippocampus through neurogenesis by omega-3 fatty acids: a novel preventive strategy for posttraumatic stress disorder? Biopsychosoc Med 5: 3. doi: 10.1186/1751-0759-5-3
[20]  Ross BM, Seguin J, Sieswerda LE (2007) Omega-3 fatty acids as treatments for mental illness: which disorder and which fatty acid? Lipids Health Dis 6: 21. doi: 10.1186/1476-511x-6-21
[21]  Martins JG (2009) EPA but not DHA appears to be responsible for the efficacy of omega-3 long chain polyunsaturated fatty acid supplementation in depression: evidence from a meta-analysis of randomized controlled trials. J Am Coll Nutr 28: 525–542. doi: 10.1080/07315724.2009.10719785
[22]  Freeman MP, Hibbeln JR, Wisner KL, Brumbach BH, Watchman M, et al. (2006) Randomized dose-ranging pilot trial of omega-3 fatty acids for postpartum depression. Acta Psychiatr Scand 113: 31–35. doi: 10.1111/j.1600-0447.2005.00660.x
[23]  Adams PB, Lawson S, Sanigorski A, Sinclair AJ (1996) Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 31 Suppl: S157–161. doi: 10.1007/bf02637069
[24]  Conklin SM, Manuck SB, Yao JK, Flory JD, Hibbeln JR, et al. (2007) High omega-6 and low omega-3 fatty acids are associated with depressive symptoms and neuroticism. Psychosom Med 69: 932–934. doi: 10.1097/psy.0b013e31815aaa42
[25]  Lucas M, Mirzaei F, O'Reilly EJ, Pan A, Willett WC, et al. (2011) Dietary intake of n-3 and n-6 fatty acids and the risk of clinical depression in women: a 10-y prospective follow-up study. Am J Clin Nutr 93: 1337–1343. doi: 10.3945/ajcn.111.011817
[26]  Simopoulos AP (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol 44: 203–215. doi: 10.1007/s12035-010-8162-0
[27]  Bourre JM, Bonneil M, Dumont O, Piciotti M, Calaf R, et al. (1990) Effect of increasing amounts of dietary fish oil on brain and liver fatty composition. Biochim Biophys Acta 1043: 149–152. doi: 10.1016/0005-2760(90)90288-9
[28]  Bourre JM, Bonneil M, Dumont O, Piciotti M, Nalbone G, et al. (1988) High dietary fish oil alters the brain polyunsaturated fatty acid composition. Biochim Biophys Acta 960: 458–461. doi: 10.1016/0005-2760(88)90055-0
[29]  Bhatia HS, Agrawal R, Sharma S, Huo YX, Ying Z, et al. (2011) Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS One 6: e28451. doi: 10.1371/journal.pone.0028451
[30]  Chung WL, Chen JJ, Su HM (2008) Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr 138: 1165–1171.
[31]  Bousquet M, Gue K, Emond V, Julien P, Kang JX, et al. (2011) Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson's disease. J Lipid Res 52: 263–271. doi: 10.1194/jlr.m011692
[32]  Lim GP, Calon F, Morihara T, Yang F, Teter B, et al. (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25: 3032–3040. doi: 10.1523/jneurosci.4225-04.2005
[33]  Hennebelle M, Balasse L, Latour A, Champeil-Potokar G, Denis S, et al. (2012) Influence of omega-3 fatty acid status on the way rats adapt to chronic restraint stress. PLoS One 7: e42142. doi: 10.1371/journal.pone.0042142
[34]  Ferraz AC, Delattre AM, Almendra RG, Sonagli M, Borges C, et al. (2011) Chronic omega-3 fatty acids supplementation promotes beneficial effects on anxiety, cognitive and depressive-like behaviors in rats subjected to a restraint stress protocol. Behav Brain Res 219: 116–122. doi: 10.1016/j.bbr.2010.12.028
[35]  Barcelo-Coblijn G, Hogyes E, Kitajka K, Puskas LG, Zvara A, et al. (2003) Modification by docosahexaenoic acid of age-induced alterations in gene expression and molecular composition of rat brain phospholipids. Proc Natl Acad Sci U S A 100: 11321–11326. doi: 10.1073/pnas.1734008100
[36]  Harbeby E, Jouin M, Alessandri JM, Lallemand MS, Linard A, et al. (2012) n-3 PUFA status affects expression of genes involved in neuroenergetics differently in the fronto-parietal cortex compared to the CA1 area of the hippocampus: effect of rest and neuronal activation in the rat. Prostaglandins Leukot Essent Fatty Acids 86: 211–220. doi: 10.1016/j.plefa.2012.04.008
[37]  Kitajka K, Puskas LG, Zvara A, Hackler L Jr, Barcelo-Coblijn G, et al. (2002) The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc Natl Acad Sci U S A 99: 2619–2624. doi: 10.1073/pnas.042698699
[38]  Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, et al. (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 101: 10931–10936. doi: 10.1073/pnas.0402342101
[39]  Begg DP, Puskas LG, Kitajka K, Menesi D, Allen AM, et al. (2012) Hypothalamic gene expression in omega-3 PUFA-deficient male rats before, and following, development of hypertension. Hypertens Res 35: 381–387. doi: 10.1038/hr.2011.194
[40]  Le-Niculescu H, Case NJ, Hulvershorn L, Patel SD, Bowker D, et al. (2011) Convergent functional genomic studies of omega-3 fatty acids in stress reactivity, bipolar disorder and alcoholism. Transl Psychiatry 1: e4. doi: 10.1038/tp.2011.1
[41]  Puskas LG, Bereczki E, Santha M, Vigh L, Csanadi G, et al. (2004) Cholesterol and cholesterol plus DHA diet-induced gene expression and fatty acid changes in mouse eye and brain. Biochimie 86: 817–824. doi: 10.1016/j.biochi.2004.10.004
[42]  Yon MA, Mauger SL, Pickavance LC (2013) Relationships between dietary macronutrients and adult neurogenesis in the regulation of energy metabolism. Br J Nutr 109: 1573–1589. doi: 10.1017/s000711451200579x
[43]  Balcombe JP, Barnard ND, Sandusky C (2004) Laboratory routines cause animal stress. Contemp Top Lab Anim Sci 43: 42–51.
[44]  Bourre JM, Piciotti M, Dumont O, Pascal G, Durand G (1990) Dietary linoleic acid and polyunsaturated fatty acids in rat brain and other organs. Minimal requirements of linoleic acid. Lipids 25: 465–472. doi: 10.1007/bf02538090
[45]  Cunnane SC, Keeling PW, Thompson RP, Crawford MA (1984) Linoleic acid and arachidonic acid metabolism in human peripheral blood leucocytes: comparison with the rat. Br J Nutr 51: 209–217. doi: 10.1079/bjn19840025
[46]  Hammamieh R, Chakraborty N, De Lima TC, Meyerhoff J, Gautam A, et al. (2012) Murine model of repeated exposures to conspecific trained aggressors simulates features of post-traumatic stress disorder. Behav Brain Res 235: 55–66. doi: 10.1016/j.bbr.2012.07.022
[47]  Hammamieh R, Chakraborty N, Miller SA, Waddy E, Barmada M, et al. (2007) Differential effects of omega-3 and omega-6 Fatty acids on gene expression in breast cancer cells. Breast Cancer Res Treat 101: 7–16. doi: 10.1007/s10549-006-9269-x
[48]  Berger JA, Hautaniemi S, Jarvinen AK, Edgren H, Mitra SK, et al. (2004) Optimized LOWESS normalization parameter selection for DNA microarray data. BMC Bioinformatics 5: 194. doi: 10.1186/1471-2105-5-194
[49]  Al-Shahrour F, Minguez P, Tarraga J, Medina I, Alloza E, et al. (2007) FatiGO +: a functional profiling tool for genomic data. Integration of functional annotation, regulatory motifs and interaction data with microarray experiments. Nucleic Acids Res 35: W91–96. doi: 10.1093/nar/gkm260
[50]  Hammamieh R, Chakraborty N, Wang Y, Laing M, Liu Z, et al. (2007) GeneCite: a stand-alone open source tool for high-throughput literature and pathway mining. OMICS 11: 143–151. doi: 10.1089/omi.2007.4322
[51]  Clark WF, Parbtani A (1994) Omega-3 fatty acid supplementation in clinical and experimental lupus nephritis. Am J Kidney Dis 23: 644–647.
[52]  Sublette ME, Ellis SP, Geant AL, Mann JJ (2011) Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry 72: 1577–1584. doi: 10.4088/jcp.10m06634
[53]  Bloch MH, Hannestad J (2012) Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry 17: 1272–1282. doi: 10.1038/mp.2011.100
[54]  Sarris J, Mischoulon D, Schweitzer I (2012) Omega-3 for bipolar disorder: meta-analyses of use in mania and bipolar depression. J Clin Psychiatry 73: 81–86. doi: 10.4088/jcp.10r06710
[55]  Ross BM (2007) Omega-3 fatty acid deficiency in major depressive disorder is caused by the interaction between diet and a genetically determined abnormality in phospholipid metabolism. Med Hypotheses 68: 515–524. doi: 10.1016/j.mehy.2006.07.054
[56]  Simopoulos AP (2011) Importance of the omega-6/omega-3 balance in health and disease: evolutionary aspects of diet. World Rev Nutr Diet 102: 10–21. doi: 10.1159/000327785
[57]  von Au D, Brandle M, Rupp H, Jacob R (1988) Influence of a diet rich in fish oil on blood pressure, body weight and cardiac hypertrophy in spontaneously hypertensive rats. Eur J Appl Physiol Occup Physiol 58: 97–99. doi: 10.1007/bf00636610
[58]  Yu H, Bi Y, Ma W, He L, Yuan L, et al. (2010) Long-term effects of high lipid and high energy diet on serum lipid, brain fatty acid composition, and memory and learning ability in mice. Int J Dev Neurosci 28: 271–276. doi: 10.1016/j.ijdevneu.2009.12.001
[59]  Grant WF, Gillingham MB, Batra AK, Fewkes NM, Comstock SM, et al. (2011) Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PLoS One 6: e17261. doi: 10.1371/journal.pone.0017261
[60]  Heerwagen MJ, Stewart MS, de la Houssaye BA, Janssen RC, Friedman JE (2013) Transgenic increase in N-3/n-6 Fatty Acid ratio reduces maternal obesity-associated inflammation and limits adverse developmental programming in mice. PLoS One 8: e67791. doi: 10.1371/journal.pone.0067791
[61]  Lei X, Zhang W, Liu T, Xiao H, Liang W, et al. (2013) Perinatal supplementation with omega-3 polyunsaturated Fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats. PLoS One 8: e70645. doi: 10.1371/journal.pone.0070645
[62]  Wakefield SL, Lane M, Schulz SJ, Hebart ML, Thompson JG, et al. (2008) Maternal supply of omega-3 polyunsaturated fatty acids alter mechanisms involved in oocyte and early embryo development in the mouse. Am J Physiol Endocrinol Metab 294: E425–434. doi: 10.1152/ajpendo.00409.2007
[63]  Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, et al. (2010) Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res 70: 7960–7969. doi: 10.1158/0008-5472.can-10-1396
[64]  Freeman MP (2006) Omega-3 fatty acids and perinatal depression: a review of the literature and recommendations for future research. Prostaglandins Leukot Essent Fatty Acids 75: 291–297. doi: 10.1016/j.plefa.2006.07.007
[65]  Guo J, Jou W, Gavrilova O, Hall KD (2009) Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS One 4: e5370. doi: 10.1371/journal.pone.0005370
[66]  Caroni P, Donato F, Muller D (2012) Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci 13: 478–490. doi: 10.1038/nrn3258
[67]  Gogolla N, Galimberti I, Caroni P (2007) Structural plasticity of axon terminals in the adult. Curr Opin Neurobiol 17: 516–524. doi: 10.1016/j.conb.2007.09.002
[68]  Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298: 776–780. doi: 10.1126/science.1075333
[69]  Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11: 239–251. doi: 10.1038/nrn2807
[70]  Caddick SJ, Wang C, Fletcher CF, Jenkins NA, Copeland NG, et al. (1999) Excitatory but not inhibitory synaptic transmission is reduced in lethargic (Cacnb4(lh)) and tottering (Cacna1atg) mouse thalami. J Neurophysiol 81: 2066–2074.
[71]  Pietrobon D (2002) Calcium channels and channelopathies of the central nervous system. Mol Neurobiol 25: 31–50. doi: 10.1385/mn:25:1:031
[72]  Specht D, Wu SB, Turner P, Dearden P, Koentgen F, et al. (2009) Effects of presynaptic mutations on a postsynaptic Cacna1s calcium channel colocalized with mGluR6 at mouse photoreceptor ribbon synapses. Invest Ophthalmol Vis Sci 50: 505–515. doi: 10.1167/iovs.08-2758
[73]  Kil TH, Kim JB (2010) Severe respiratory phenotype caused by a de novo Arg528Gly mutation in the CACNA1S gene in a patient with hypokalemic periodic paralysis. Eur J Paediatr Neurol 14: 278–281. doi: 10.1016/j.ejpn.2009.08.004
[74]  De Roo M, Klauser P, Garcia PM, Poglia L, Muller D (2008) Spine dynamics and synapse remodeling during LTP and memory processes. Prog Brain Res 169: 199–207. doi: 10.1016/s0079-6123(07)00011-8
[75]  Burnashev N (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24: 325–332. doi: 10.1016/s0143-4160(98)90056-2
[76]  Curcic-Blake B, Swart M, Ter Horst GJ, Langers DR, Kema IP, et al. (2012) Variation of the gene coding for DARPP-32 (PPP1R1B) and brain connectivity during associative emotional learning. Neuroimage 59: 1540–1550. doi: 10.1016/j.neuroimage.2011.08.036
[77]  Conner JM, Kulczycki M, Tuszynski MH (2010) Unique contributions of distinct cholinergic projections to motor cortical plasticity and learning. Cereb Cortex 20: 2739–2748. doi: 10.1093/cercor/bhq022
[78]  Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346 (Pt 3) 561–576. doi: 10.1042/0264-6021:3460561
[79]  Bousquet M, Gibrat C, Saint-Pierre M, Julien C, Calon F, et al. (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog Neuropsychopharmacol Biol Psychiatry 33: 1401–1408. doi: 10.1016/j.pnpbp.2009.07.018
[80]  Cysneiros RM, Ferrari D, Arida RM, Terra VC, de Almeida AC, et al. (2010) Qualitative analysis of hippocampal plastic changes in rats with epilepsy supplemented with oral omega-3 fatty acids. Epilepsy Behav 17: 33–38. doi: 10.1016/j.yebeh.2009.11.006
[81]  Kovalchuk Y, Hanse E, Kafitz KW, Konnerth A (2002) Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science 295: 1729–1734. doi: 10.1126/science.1067766
[82]  Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, et al. (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25: 9989–9999. doi: 10.1523/jneurosci.2492-05.2005
[83]  Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, et al. (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8: 1069–1077. doi: 10.1038/nn1510
[84]  Hauck S, Kapczinski F, Roesler R, de Moura Silveira E Jr, Magalhaes PV, et al. (2010) Serum brain-derived neurotrophic factor in patients with trauma psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 34: 459–462. doi: 10.1016/j.pnpbp.2010.01.010
[85]  Takei S, Morinobu S, Yamamoto S, Fuchikami M, Matsumoto T, et al. (2011) Enhanced hippocampal BDNF/TrkB signaling in response to fear conditioning in an animal model of posttraumatic stress disorder. J Psychiatr Res 45: 460–468. doi: 10.1016/j.jpsychires.2010.08.009
[86]  Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294: 1945–1948. doi: 10.1126/science.1065057
[87]  Liuzzi GM, Latronico T, Rossano R, Viggiani S, Fasano A, et al. (2007) Inhibitory effect of polyunsaturated fatty acids on MMP-9 release from microglial cells–implications for complementary multiple sclerosis treatment. Neurochem Res 32: 2184–2193. doi: 10.1007/s11064-007-9415-9
[88]  Xu H, Gao HL, Zheng W, Xin N, Chi ZH, et al. (2011) Lactational zinc deficiency-induced hippocampal neuronal apoptosis by a BDNF-independent TrkB signaling pathway. Hippocampus 21: 495–501. doi: 10.1002/hipo.20767
[89]  Kucharova K, Chang Y, Boor A, Yong VW, Stallcup WB (2011) Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord. J Neuroinflammation 8: 158. doi: 10.1186/1742-2094-8-158
[90]  Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, et al. (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62: 25–33.
[91]  Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ (1996) The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr 63: 116–122.
[92]  Endres S, Meydani SN, Ghorbani R, Schindler R, Dinarello CA (1993) Dietary supplementation with n-3 fatty acids suppresses interleukin-2 production and mononuclear cell proliferation. J Leukoc Biol 54: 599–603.
[93]  Chandrasekar B, Fernandes G (1994) Decreased pro-inflammatory cytokines and increased antioxidant enzyme gene expression by omega-3 lipids in murine lupus nephritis. Biochem Biophys Res Commun 200: 893–898. doi: 10.1006/bbrc.1994.1534
[94]  Gorjao R, Azevedo-Martins AK, Rodrigues HG, Abdulkader F, Arcisio-Miranda M, et al. (2009) Comparative effects of DHA and EPA on cell function. Pharmacol Ther 122: 56–64. doi: 10.1016/j.pharmthera.2009.01.004
[95]  Maes M, Christophe A, Bosmans E, Lin A, Neels H (2000) In humans, serum polyunsaturated fatty acid levels predict the response of proinflammatory cytokines to psychologic stress. Biol Psychiatry 47: 910–920. doi: 10.1016/s0006-3223(99)00268-1
[96]  Suk K, Lee H, Kang SS, Cho GJ, Choi WS (2003) Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J Pharmacol Exp Ther 305: 638–645. doi: 10.1124/jpet.102.047373
[97]  Carlsen H, Haugen F, Zadelaar S, Kleemann R, Kooistra T, et al. (2009) Diet-induced obesity increases NF-kappaB signaling in reporter mice. Genes Nutr 4: 215–222. doi: 10.1007/s12263-009-0133-6
[98]  Rizzo AM, Corsetto PA, Montorfano G, Opizzi A, Faliva M, et al. (2012) Comparison between the AA/EPA ratio in depressed and non depressed elderly females: omega-3 fatty acid supplementation correlates with improved symptoms but does not change immunological parameters. Nutr J 11: 82. doi: 10.1186/1475-2891-11-82
[99]  Matsuda Y, Kusano H, Tsujimoto Y (1996) Chromosomal assignment of the Bcl2-related genes, Bcl2l and Bax, in the mouse and rat. Cytogenet Cell Genet 74: 107–110. doi: 10.1159/000134393
[100]  Zhang Y, Park TS, Gidday JM (2007) Hypoxic preconditioning protects human brain endothelium from ischemic apoptosis by Akt-dependent survivin activation. Am J Physiol Heart Circ Physiol 292: H2573–2581. doi: 10.1152/ajpheart.01098.2006
[101]  Muhie S, Hammamieh R, Cummings C, Yang D, Jett M (2013) Transcriptome characterization of immune suppression from battlefield-like stress. Genes Immun 14: 19–34. doi: 10.1038/gene.2012.49
[102]  Alkhalil A, Hammamieh R, Hardick J, Ichou MA, Jett M, et al. (2010) Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions. Virol J 7: 173. doi: 10.1186/1743-422x-7-173
[103]  Mills JD, Bailes JE, Sedney CL, Hutchins H, Sears B (2011) Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model. J Neurosurg 114: 77–84. doi: 10.3171/2010.5.jns08914
[104]  Mann JJ, Currier D (2012) Medication in Suicide Prevention Insights from Neurobiology of Suicidal Behavior. In: Dwivedi Y, editor. The Neurobiological Basis of Suicide. Boca Raton (FL).
[105]  Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, et al. (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 57: 252–260. doi: 10.1016/j.biopsych.2004.10.019
[106]  Marin Bivens CL, Grondahl C, Murray A, Blume T, Su YQ, et al. (2004) Meiosis-activating sterol promotes the metaphase I to metaphase II transition and preimplantation developmental competence of mouse oocytes maturing in vitro. Biol Reprod 70: 1458–1464. doi: 10.1095/biolreprod.103.026351
[107]  Meyer JH, Kruger S, Wilson AA, Christensen BK, Goulding VS, et al. (2001) Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12: 4121–4125. doi: 10.1097/00001756-200112210-00052
[108]  Post RM (2010) Mechanisms of illness progression in the recurrent affective disorders. Neurotox Res 18: 256–271. doi: 10.1007/s12640-010-9182-2
[109]  Lorenzo A, Yuan M, Zhang Z, Paganetti PA, Sturchler-Pierrat C, et al. (2000) Amyloid beta interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease. Nat Neurosci 3: 460–464.
[110]  Blandini F, Sinforiani E, Pacchetti C, Samuele A, Bazzini E, et al. (2006) Peripheral proteasome and caspase activity in Parkinson disease and Alzheimer disease. Neurology 66: 529–534. doi: 10.1212/01.wnl.0000198511.09968.b3
[111]  McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21: 195–218. doi: 10.1016/0165-0173(95)00011-9
[112]  Wang D, Fu Q, Zhou Y, Xu B, Shi Q, et al. (2013) beta2 adrenergic receptor, protein kinase A (PKA) and c-Jun N-terminal kinase (JNK) signaling pathways mediate tau pathology in Alzheimer's disease models. J Biol Chem doi: 10.1074/jbc.m112.415141
[113]  Heck A, Vogler C, Gschwind L, Ackermann S, Auschra B, et al. (2011) Statistical epistasis and functional brain imaging support a role of voltage-gated potassium channels in human memory. PLoS One 6: e29337. doi: 10.1371/journal.pone.0029337
[114]  Sanchez-Resendis O, Medina AC, Serafin N, Prado-Alcala RA, Roozendaal B, et al. (2012) Glucocorticoid-cholinergic interactions in the dorsal striatum in memory consolidation of inhibitory avoidance training. Front Behav Neurosci 6: 33. doi: 10.3389/fnbeh.2012.00033
[115]  Takuma K, Mizoguchi H, Funatsu Y, Hoshina Y, Himeno Y, et al. (2012) Combination of chronic stress and ovariectomy causes conditioned fear memory deficits and hippocampal cholinergic neuronal loss in mice. Neuroscience 207: 261–273. doi: 10.1016/j.neuroscience.2012.01.034
[116]  Kolassa IT, Ertl V, Eckart C, Glockner F, Kolassa S, et al. (2010) Association study of trauma load and SLC6A4 promoter polymorphism in posttraumatic stress disorder: evidence from survivors of the Rwandan genocide. J Clin Psychiatry 71: 543–547. doi: 10.4088/jcp.08m04787blu
[117]  Gogolla N, Galimberti I, Deguchi Y, Caroni P (2009) Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron 62: 510–525. doi: 10.1016/j.neuron.2009.04.022
[118]  Uittenbogaard M, Baxter KK, Chiaramello A (2010) NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network. J Neurosci Res 88: 33–54. doi: 10.1002/jnr.22182
[119]  Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A (2004) A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci U S A 101: 13915–13920. doi: 10.1073/pnas.0405939101
[120]  Gao SF, Qi XR, Zhao J, Balesar R, Bao AM, et al. (2012) Decreased NOS1 Expression in the Anterior Cingulate Cortex in Depression. Cereb Cortex doi: 10.1093/cercor/bhs285
[121]  Reif A, Grunblatt E, Herterich S, Wichart I, Rainer MK, et al. (2011) Association of a functional NOS1 promoter repeat with Alzheimer's disease in the VITA cohort. J Alzheimers Dis 23: 327–333.
[122]  Cui H, Nishiguchi N, Yanagi M, Fukutake M, Mouri K, et al. (2010) A putative cis-acting polymorphism in the NOS1 gene is associated with schizophrenia and NOS1 immunoreactivity in the postmortem brain. Schizophr Res 121: 172–178. doi: 10.1016/j.schres.2010.05.003
[123]  Silberberg G, Ben-Shachar D, Navon R (2010) Genetic analysis of nitric oxide synthase 1 variants in schizophrenia and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 153B: 1318–1328. doi: 10.1002/ajmg.b.31112
[124]  Grossetete M, Phelps J, Arko L, Yonas H, Rosenberg GA (2009) Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery 65: 702–708. doi: 10.1227/01.neu.0000351768.11363.48
[125]  Rybakowski JK, Remlinger-Molenda A, Czech-Kucharska A, Wojcicka M, Michalak M, et al. (2013) Increased serum matrix metalloproteinase-9 (MMP-9) levels in young patients during bipolar depression. J Affect Disord 146: 286–289. doi: 10.1016/j.jad.2012.07.019
[126]  Stomrud E, Bjorkqvist M, Janciauskiene S, Minthon L, Hansson O (2010) Alterations of matrix metalloproteinases in the healthy elderly with increased risk of prodromal Alzheimer's disease. Alzheimers Res Ther 2: 20. doi: 10.1186/alzrt44
[127]  Lorenzl S, Albers DS, Relkin N, Ngyuen T, Hilgenberg SL, et al. (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer's disease. Neurochem Int 43: 191–196. doi: 10.1016/s0197-0186(03)00004-4
[128]  Rybakowski JK, Skibinska M, Kapelski P, Kaczmarek L, Hauser J (2009) Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr Res 109: 90–93. doi: 10.1016/j.schres.2009.02.005
[129]  Somerville MJ, Percy ME, Bergeron C, Yoong LK, Grima EA, et al. (1991) Localization and quantitation of 68 kDa neurofilament and superoxide dismutase-1 mRNA in Alzheimer brains. Brain Res Mol Brain Res 9: 1–8. doi: 10.1016/0169-328x(91)90123-f
[130]  Gulesserian T, Seidl R, Hardmeier R, Cairns N, Lubec G (2001) Superoxide dismutase SOD1, encoded on chromosome 21, but not SOD2 is overexpressed in brains of patients with Down syndrome. J Investig Med 49: 41–46. doi: 10.2310/6650.2001.34089
[131]  Grassi-Oliveira R, Stein LM, Lopes RP, Teixeira AL, Bauer ME (2008) Low plasma brain-derived neurotrophic factor and childhood physical neglect are associated with verbal memory impairment in major depression–a preliminary report. Biol Psychiatry 64: 281–285. doi: 10.1016/j.biopsych.2008.02.023
[132]  Green EK, Raybould R, Macgregor S, Hyde S, Young AH, et al. (2006) Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder: case-control study of over 3000 individuals from the UK. Br J Psychiatry 188: 21–25. doi: 10.1192/bjp.bp.105.009969
[133]  Lee Y, Lim SW, Kim SY, Chung JW, Kim J, et al. (2013) Association between the BDNF Val66Met Polymorphism and Chronicity of Depression. Psychiatry Investig 10: 56–61. doi: 10.4306/pi.2013.10.1.56
[134]  Lin CH, Wu RM, Tai CH, Chen ML, Hu FC (2011) Lrrk2 S1647T and BDNF V66M interact with environmental factors to increase risk of Parkinson's disease. Parkinsonism Relat Disord 17: 84–88. doi: 10.1016/j.parkreldis.2010.11.011
[135]  Laske C, Stellos K, Hoffmann N, Stransky E, Straten G, et al. (2011) Higher BDNF serum levels predict slower cognitive decline in Alzheimer's disease patients. Int J Neuropsychopharmacol 14: 399–404. doi: 10.1017/s1461145710001008
[136]  Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, et al. (2008) Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA 299: 1291–1305. doi: 10.1001/jama.299.11.1291
[137]  Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, et al. (2010) Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology 35: 1684–1692. doi: 10.1038/npp.2010.37
[138]  Kang JI, Chung HC, Jeung HC, Kim SJ, An SK, et al. (2012) FKBP5 polymorphisms as vulnerability to anxiety and depression in patients with advanced gastric cancer: a controlled and prospective study. Psychoneuroendocrinology 37: 1569–1576. doi: 10.1016/j.psyneuen.2012.02.017
[139]  Menke A, Klengel T, Rubel J, Bruckl T, Pfister H, et al. (2013) Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav doi: 10.1111/gbb.12026

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133