全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Comparative Genome Analysis of Lactobacillus rhamnosus Clinical Isolates from Initial Stages of Dental Pulp Infection: Identification of a New Exopolysaccharide Cluster

DOI: 10.1371/journal.pone.0090643

Full-Text   Cite this paper   Add to My Lib

Abstract:

The human oral microbiome has a major role in oral diseases including dental caries. Our studies on progression of caries infection through dentin and more recently, the invasion of vital dental pulp, detected Lactobacillus rhamnosus in the initial stages of infection of vital pulp tissue. In this study employing current high-throughput next generation sequencing technology we sought to obtain insight into genomic traits of tissue invasive L. rhamnosus, to recognise biomarkers that could provide an understanding of pathogenic potential of lactobacilli, generally regarded as safe. Roche GS FLX+ technology was used to generate whole genome sequences of two clinical isolates of L. rhamnosus infecting vital pulp. Detailed genome-wide comparison of the genetic profiles of tissue invasive L. rhamnosus with probiotic L. rhamnosus was performed to test the hypothesis that specific strains of L. rhamnosus possessing a unique gene complement are selected for the capacity to invade vital pulp tissue. Analysis identified 264 and 258 genes respectively, from dental pulp-invasive L. rhamnosus strains LRHMDP2 and LRHMDP3 isolated from two different subjects that were not present in the reference probiotic L. rhamnosus strain ATCC 53103 (GG). Distinct genome signatures identified included the presence of a modified exopolysaccharide cluster, a characteristic confirmed in a further six clinical isolates. Additional features of LRHMDP2 and LRHMDP3 were altered transcriptional regulators from RpoN, NtrC, MutR, ArsR and zinc-binding Cro/CI families, as well as changes in the two-component sensor kinase response regulator and ABC transporters for ferric iron. Both clinical isolates of L. rhamnosus contained a single SpaFED cluster, as in L. rhamnosus Lc705, instead of the two Spa clusters (SpaCBA and SpaFED) identified in L. rhamnosus ATCC 53103 (GG). Genomic distance analysis and SNP divergence confirmed a close relationship of the clinical isolates but segregation from the reference probiotic L. rhamnosus strain ATCC 53103 (GG).

References

[1]  Paster BJ, Dewhirst FE (2009) Molecular microbial diagnosis. Periodontology 2000 51: 38–44. doi: 10.1111/j.1600-0757.2009.00316.x
[2]  Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, Romero H, Simon-Soro A, et al. (2012) The oral metagenome in health and disease. The ISME journal 6: 46–56. doi: 10.1038/ismej.2011.85
[3]  Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, et al. (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME journal 6: 1176–1185. doi: 10.1038/ismej.2011.191
[4]  Ling Z, Kong J, Jia P, Wei C, Wang Y, et al. (2010) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microbial ecology 60: 677–690. doi: 10.1007/s00248-010-9712-8
[5]  Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC microbiology 9: 259. doi: 10.1186/1471-2180-9-259
[6]  Nadkarni MA, Simonian MR, Harty DW, Zoellner H, Jacques NA, et al. (2010) Lactobacilli are prominent in the initial stages of polymicrobial infection of dental pulp. J Clin Microbiol 48: 1732–1740. doi: 10.1128/jcm.01912-09
[7]  Schaudinn C, Carr G, Gorur A, Jaramillo D, Costerton JW, et al. (2009) Imaging of endodontic biofilms by combined microscopy (FISH/cLSM - SEM). Journal of microscopy 235: 124–127. doi: 10.1111/j.1365-2818.2009.03201.x
[8]  Huttenhower C, HMP Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207–214.
[9]  Chen Z, Wilkins MR, Hunter N, Nadkarni MA (2013) Draft Genome Sequences of Two Clinical Isolates of Lactobacillus rhamnosus from Initial Stages of Dental Pulp Infection. Genome Announc 1.
[10]  Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, et al. (2004) Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol 42: 3128–3136. doi: 10.1128/jcm.42.7.3128-3136.2004
[11]  Lukjancenko O, Ussery DW, Wassenaar TM (2011) Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microbial ecology 63: 651–673. doi: 10.1007/s00248-011-9948-y
[12]  Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC genomics 9: 75. doi: 10.1186/1471-2164-9-75
[13]  Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, et al. (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proceedings of the National Academy of Sciences of the United States of America 106: 17193–17198. doi: 10.1073/pnas.0908876106
[14]  Macklaim JM, Gloor GB, Anukam KC, Cribby S, Reid G (2011) At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proceedings of the National Academy of Sciences of the United States of America 108 Suppl 14688–4695. doi: 10.1073/pnas.1000086107
[15]  Fiocco D, Capozzi V, Collins M, Gallone A, Hols P, et al. (2009) Characterization of the CtsR stress response regulon in Lactobacillus plantarum. Journal of bacteriology 192: 896–900. doi: 10.1128/jb.01122-09
[16]  Hu Y, Raengpradub S, Schwab U, Loss C, Orsi RH, et al. (2007) Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Applied and environmental microbiology 73: 7967–7980. doi: 10.1128/aem.01085-07
[17]  Jolly L, Stingele F (2001) Molecular organization and functionality of exopolysaccharide gene clusters in lactic acid bacteria. International Dairy Journal 11: 733–745. doi: 10.1016/s0958-6946(01)00117-0
[18]  Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, et al. (2009) Identification of a Gene Cluster for the Biosynthesis of a Long, Galactose-Rich Exopolysaccharide in Lactobacillus rhamnosus GG and Functional Analysis of the Priming Glycosyltransferase. Applied and environmental microbiology 75: 3554–3563. doi: 10.1128/aem.02919-08
[19]  Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in biotechnology 21: 269–274. doi: 10.1016/s0167-7799(03)00107-0
[20]  Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnology advances 19: 597–625. doi: 10.1016/s0734-9750(01)00084-2
[21]  Peant B, LaPointe G, Gilbert C, Atlan D, Ward P, et al. (2005) Comparative analysis of the exopolysaccharide biosynthesis gene clusters from four strains of Lactobacillus rhamnosus. Microbiology (Reading, England) 151: 1839–1851. doi: 10.1099/mic.0.27852-0
[22]  Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, et al. (2006) Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS genetics 2: e31. doi: 10.1371/journal.pgen.0020031
[23]  Jiang SM, Wang L, Reeves PR (2001) Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infection and immunity 69: 1244–1255. doi: 10.1128/iai.69.3.1244-1255.2001
[24]  Shelburne SA, Davenport MT, Keith DB, Musser JM (2008) The role of complex carbohydrate catabolism in the pathogenesis of invasive streptococci. Trends in microbiology 16: 318–325. doi: 10.1016/j.tim.2008.04.002
[25]  Francl AL, Thongaram T, Miller MJ (2010) The PTS transporters of Lactobacillus gasseri ATCC 33323. BMC microbiology 10: 77. doi: 10.1186/1471-2180-10-77
[26]  Monedero V, Maze A, Boel G, Zuniga M, Beaufils S, et al. (2007) The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response. Journal of molecular microbiology and biotechnology 12: 20–32. doi: 10.1159/000096456
[27]  Broadbent JR, Neeno-Eckwall EC, Stahl B, Tandee K, Cai H, et al. (2012) Analysis of the Lactobacillus casei supragenome and its influence in species evolution and lifestyle adaptation. BMC genomics 13: 533. doi: 10.1186/1471-2164-13-533
[28]  Monedero V, Yebra MJ, Poncet S, Deutscher J (2008) Maltose transport in Lactobacillus casei and its regulation by inducer exclusion. Research in microbiology 159: 94–102. doi: 10.1016/j.resmic.2007.10.002
[29]  Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72: 317–364. doi: 10.1128/mmbr.00031-07
[30]  Garmory HS, Titball RW (2004) ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infection and immunity 72: 6757–6763. doi: 10.1128/iai.72.12.6757-6763.2004
[31]  Nizet V (2006) Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Current issues in molecular biology 8: 11–26.
[32]  Chagnot C, Listrat A, Astruc T, Desvaux M (2012) Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cellular microbiology 14: 1687–1696. doi: 10.1111/cmi.12002
[33]  Love RM, Jenkinson HF (2002) Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med 13: 171–183. doi: 10.1177/154411130201300207
[34]  Hubble TS, Hatton JF, Nallapareddy SR, Murray BE, Gillespie MJ (2003) Influence of Enterococcus faecalis proteases and the collagen-binding protein, Ace, on adhesion to dentin. Oral microbiology and immunology 18: 121–126. doi: 10.1034/j.1399-302x.2003.00059.x
[35]  Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, et al. (2011) The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infection and immunity 79: 2277–2284. doi: 10.1128/iai.00767-10
[36]  Velez MP, Petrova MI, Lebeer S, Verhoeven TL, Claes I, et al. (2010) Characterization of MabA, a modulator of Lactobacillus rhamnosus GG adhesion and biofilm formation. FEMS immunology and medical microbiology 59: 386–398. doi: 10.1111/j.1574-695x.2010.00680.x
[37]  Schroeder K, Jularic M, Horsburgh SM, Hirschhausen N, Neumann C, et al. (2009) Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PloS one 4: e7567. doi: 10.1371/journal.pone.0007567
[38]  Williams RJ, Henderson B, Sharp LJ, Nair SP (2002) Identification of a fibronectin-binding protein from Staphylococcus epidermidis. Infection and immunity 70: 6805–6810. doi: 10.1128/iai.70.12.6805-6810.2002
[39]  von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, et al. (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Applied and environmental microbiology 76: 2049–2057. doi: 10.1128/aem.01958-09
[40]  Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P (1997) Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infection and immunity 65: 5309–5319.
[41]  Stevens MJ, Molenaar D, de Jong A, De Vos WM, Kleerebezem M (2010) sigma54-Mediated control of the mannose phosphotransferase sytem in Lactobacillus plantarum impacts on carbohydrate metabolism. Microbiology 156: 695–707. doi: 10.1099/mic.0.034165-0
[42]  Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL (2009) Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome biology and evolution 1: 239–257. doi: 10.1093/gbe/evp019
[43]  Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, et al. (2006) Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America 103: 15611–15616. doi: 10.1073/pnas.0607117103
[44]  Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. Journal of bacteriology 189: 1199–1208. doi: 10.1128/jb.01351-06
[45]  Avci FY, Kasper DL (2010) How bacterial carbohydrates influence the adaptive immune system. Annual review of immunology 28: 107–130. doi: 10.1146/annurev-immunol-030409-101159
[46]  Huang X, Madan A (1999) CAP3: A DNA sequence assembly program. Genome research 9: 868–877. doi: 10.1101/gr.9.9.868
[47]  Song J, Xu Y, White S, Miller KW, Wolinsky M (2005) SNPsFinder—a web-based application for genome-wide discovery of single nucleotide polymorphisms in microbial genomes. Bioinformatics (Oxford, England) 21: 2083–2084. doi: 10.1093/bioinformatics/bti176
[48]  Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics (Oxford, England) 21: 537–539. doi: 10.1093/bioinformatics/bti054

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133