[1] | Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17: 2443–2452. doi: 10.1093/cercor/bhl152
|
[2] | Farries MA, Fairhall AL (2007) Reinforcement learning with modulated spike timing dependent synaptic plasticity. J Neurophysiol 98: 3648–3665. doi: 10.1152/jn.00364.2007
|
[3] | Florian RV (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Comput 19: 1468–1502. doi: 10.1162/neco.2007.19.6.1468
|
[4] | Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLoS Comput Biol 4: e1000180. doi: 10.1371/journal.pcbi.1000180
|
[5] | Hull CL (1943) Principles of Behavior. New York: Appelton-century.
|
[6] | Frey U, Morris RG (1997) Synaptic tagging and long-term potentiation. Nature 385: 533–536. doi: 10.1038/385533a0
|
[7] | Morris RG (2006) Elements of a neurobiological theory of hippocampal function: the role of synaptic plasticity, synaptic tagging and schemas. The European journal of neuroscience 23: 2829–2846. doi: 10.1111/j.1460-9568.2006.04888.x
|
[8] | Seamans JK, Yang CR (2004) The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 74: 1–58. doi: 10.1016/j.pneurobio.2004.10.002
|
[9] | Nitz DA, Kargo WJ, Fleischer J (2007) Dopamine signaling and the distal reward problem. Neuroreport 18: 1833–1836. doi: 10.1097/wnr.0b013e3282f16d86
|
[10] | Zhang JC, Lau PM, Bi GQ (2009) Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc Natl Acad Sci U S A 106: 13028–13033. doi: 10.1073/pnas.0900546106
|
[11] | Cassenaer S, Laurent G (2012) Conditional modulation of spike-timing-dependent plasticity for olfactory learning. Nature 482: 47–52. doi: 10.1038/nature10776
|
[12] | Fremaux N, Sprekeler H, Gerstner W (2010) Functional requirements for reward-modulated spike-timing-dependent plasticity. J Neurosci 30: 13326–13337. doi: 10.1523/jneurosci.6249-09.2010
|
[13] | Turing AM (1948) Intelligent Machinery. National Physical Laboratory.
|
[14] | Cheng B, Titterington D (1994) Neural Networks: A Review from a Statistical Perspective. Statistical Science: 2–54.
|
[15] | Ciresan D, Meier U, Gambardella LM, Schmidhuber J (2010) Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition. Neural Computation 22: 3207–3220. doi: 10.1162/neco_a_00052
|
[16] | Zhang GP, Hu MY, Patuwo BE, Indro DC (1999) Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research 116: 16–32. doi: 10.1016/s0377-2217(98)00051-4
|
[17] | Basheer IA, Hajmeer M (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43: 3–31. doi: 10.1016/s0167-7012(00)00201-3
|
[18] | Hebb DO (1961) Distinctive features of learning in the higher animal. In: JF d, editor.Brain mechanisms and learning.Lodon: Oxford University press. pp. 37–46.
|
[19] | Rao RPN, Sejnowski TJ (2001) Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning. Neural Computation 13: 2221–2237. doi: 10.1162/089976601750541787
|
[20] | Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2: 32–48. doi: 10.1142/9789812795885_0006
|
[21] | Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86: 9574–9578. doi: 10.1073/pnas.86.23.9574
|
[22] | Hansel C, Artola A, Singer W (1997) Relation between dendritic Ca2+ levels and the polarity of synaptic long-term modifications in rat visual cortex neurons. Eur J Neurosci 9: 2309–2322. doi: 10.1111/j.1460-9568.1997.tb01648.x
|
[23] | Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24: 9847–9861. doi: 10.1523/jneurosci.0738-04.2004
|
[24] | Malenka RC, Kauer JA, Zucker R, Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of the hippocampal synaptic transmission. Science: 81–83.
|
[25] | Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39. doi: 10.1038/361031a0
|
[26] | Kawato M, Kuroda S, Schweighofer N (2011) Cerebellar supervised learning revisited: biophysical modeling and degrees-of-freedom control. Curr Opin Neurobiol 21: 791–800. doi: 10.1016/j.conb.2011.05.014
|
[27] | Jain AK, Mao J, Mohiuddin KM (1996) Artificial Neural Networks: A tutorial. Computer 23: 31–44. doi: 10.1109/2.485891
|
[28] | White H (1989) Learning in Artificial Neural Networks: A Statistical Perspective. Neural Computation 1: 425–464. doi: 10.1162/neco.1989.1.4.425
|
[29] | Huerta R, Nowotny T (2009) Fast and robust learning by reinforcement signals: explorations in the insect brain. Neural Comput 21: 2123–2151. doi: 10.1162/neco.2009.03-08-733
|
[30] | Huerta R, Nowotny T, Garcia-Sanchez M, Abarbanel HD, Rabinovich MI (2004) Learning classification in the olfactory system of insects. Neural Comput 16: 1601–1640. doi: 10.1162/089976604774201613
|
[31] | Lotfi A, Benyettou A (2011) Using Probabilistic Neural Networks for Handwritten Digit Recognition. Journal of Artificial Intelligence: 288–294.
|
[32] | Potjans W, Morrison A, Diesmann M (2009) A spiking neural network model of an actor-critic learning agent. Neural Comput 21: 301–339. doi: 10.1162/neco.2008.08-07-593
|
[33] | Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW (2012) Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PLoS One 7: e47251. doi: 10.1371/journal.pone.0047251
|
[34] | Miller P, Katz DB (2010) Stochastic transitions between neural states in taste processing and decision-making. J Neurosci 30: 2559–2570. doi: 10.1523/jneurosci.3047-09.2010
|
[35] | Lee K, Kwon DS (2008) Synaptic plasticity model of a spiking neural network for reinforcement learning. Neurocomputing 71: 3037–3043. doi: 10.1016/j.neucom.2007.09.009
|
[36] | van Rossum MC, Bi GQ, Turrigiano GG (2000) Stable Hebbian learning from spike timing-dependent plasticity. J Neurosci 20: 8812–8821.
|
[37] | Wu Z, Yamaguchi Y (2006) Conserving total synaptic weight ensures one-trial sequence learning of place fields in the hippocampus. Neural Netw 19: 547–563. doi: 10.1016/j.neunet.2005.06.048
|
[38] | Elliott T, Shadbolt NR (2002) Multiplicative synaptic normalization and a nonlinear Hebb rule underlie a neurotrophic model of competitive synaptic plasticity. Neural Comput 14: 1311–1322. doi: 10.1162/089976602753712954
|
[39] | Finelli LA, Haney S, Bazhenov M, Stopfer M, Sejnowski TJ (2008) Synaptic learning rules and sparse coding in a model sensory system. PLoS Comput Biol 4: e1000062. doi: 10.1371/journal.pcbi.1000062
|
[40] | Bazhenov M, Huerta R, Smith BH (2013) A computational framework for understanding decision making through integration of basic learning rules. J Neurosci 33: 5686–5697. doi: 10.1523/jneurosci.4145-12.2013
|
[41] | Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18: 10464–10472.
|
[42] | Hardingham NR, Hardingham GE, Fox KD, Jack JJ (2007) Presynaptic efficacy directs normalization of synaptic strength in layer 2/3 rat neocortex after paired activity. J Neurophysiol 97: 2965–2975. doi: 10.1152/jn.01352.2006
|
[43] | Morrison A, Aertsen A, Diesmann M (2007) Spike-timing-dependent plasticity in balanced random networks. Neural Comput 19: 1437–1467. doi: 10.1162/neco.2007.19.6.1437
|
[44] | Babadi B, Abbott LF (2010) Intrinsic stability of temporally shifted spike-timing dependent plasticity. PLoS Comput Biol 6: e1000961. doi: 10.1371/journal.pcbi.1000961
|
[45] | Gilson M, Fukai T (2010) Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma. PLoS One 6: e25339. doi: 10.1371/journal.pone.0025339
|
[46] | Delgado JY, Gomez-Gonzalez JF, Desai NS (2010) Pyramidal neuron conductance state gates spike-timing-dependent plasticity. J Neurosci 30: 15713–15725. doi: 10.1523/jneurosci.3068-10.2010
|
[47] | Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3 Suppl: 1178–1183
|
[48] | Kempter R, Gerstner W, van Hemmen JL (2001) Intrinsic stabilization of output rates by spike-based Hebbian learning. Neural Comput 13: 2709–2741. doi: 10.1162/089976601317098501
|
[49] | Gutig R, Aharonov R, Rotter S, Sompolinsky H (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. J Neurosci 23: 3697–3714.
|
[50] | Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K (2000) Calcium stores regulate the polarity and input specificity of synaptic modification. Nature 408: 584–588. doi: 10.1038/35046067
|
[51] | Zhou YD, Acker CD, Netoff TI, Sen K, White JA (2005) Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proc Natl Acad Sci U S A 102: 19121–19125. doi: 10.1073/pnas.0509856103
|
[52] | Haas JS, Nowotny T, Abarbanel HD (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96: 3305–3313. doi: 10.1152/jn.00551.2006
|
[53] | Sjostrom PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32: 1149–1164. doi: 10.1016/s0896-6273(01)00542-6
|
[54] | Feldman DE (2009) Synaptic mechanisms for plasticity in neocortex. Annu Rev Neurosci 32: 33–55. doi: 10.1146/annurev.neuro.051508.135516
|
[55] | Royer S, Pare D (2003) Conservation of total synaptic weight through balanced synaptic depression and potentiation. Nature 422: 518–522. doi: 10.1038/nature01530
|
[56] | Chistiakova M, Volgushev M (2009) Heterosynaptic plasticity in the neocortex. Exp Brain Res 199: 377–390. doi: 10.1007/s00221-009-1859-5
|
[57] | Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391: 892–896. doi: 10.1038/36103
|
[58] | Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69: 375–390. doi: 10.1016/s0301-0082(03)00085-6
|
[59] | Pawlak V, Kerr JN (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 28: 2435–2446. doi: 10.1523/jneurosci.4402-07.2008
|
[60] | Schultz W (1999) The Reward Signal of Midbrain Dopamine Neurons. News Physiol Sci 14: 249–255.
|
[61] | Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375: 682–684. doi: 10.1038/375682a0
|
[62] | Schiller J, Schiller Y, Clapham DE (1998) NMDA receptors amplify calcium influx into dendritic spines during associative pre- and postsynaptic activation. Nat Neurosci 1: 114–118.
|
[63] | Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266: 737–739. doi: 10.1038/266737a0
|
[64] | Bonhoeffer T, Staiger V, Aertsen A (1989) Synaptic plasticity in rat hippocampal slice cultures: local "Hebbian" conjunction of pre- and postsynaptic stimulation leads to distributed synaptic enhancement. Proc Natl Acad Sci U S A 86: 8113–8117.
|
[65] | Kossel A, Bonhoeffer T, Bolz J (1990) Non-Hebbian synapses in rat visual cortex. Neuroreport 1: 115–118. doi: 10.1097/00001756-199010000-00008
|
[66] | Engert F, Bonhoeffer T (1997) Synapse specificity of long-term potentiation breaks down at short distances. Nature 388: 279–284.
|
[67] | Schuman EM, Madison DV (1994) Locally distributed synaptic potentiation in the hippocampus. Science 263: 532–536. doi: 10.1126/science.8290963
|
[68] | Chen JY, Lonjers P, Lee C, Chistiakova M, Volgushev M, et al. (2013) Heterosynaptic Plasticity Prevents Runaway Synaptic Dynamics. J Neurosci 33: 15915–15929. doi: 10.1523/jneurosci.5088-12.2013
|
[69] | Skinner BF (1948) Superstition in the pigeon. J Exp Psychol 38: 168–172. doi: 10.1037/h0055873
|
[70] | Segal DS, Mandell AJ (1974) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol Biochem Behav 2: 249–255. doi: 10.1016/0091-3057(74)90060-4
|
[71] | Baker DA, Specio SE, Tran-Nguyen LT, Neisewander JL (1998) Amphetamine infused into the ventrolateral striatum produces oral stereotypies and conditioned place preference. Pharmacol Biochem Behav 61: 107–111. doi: 10.1016/s0091-3057(98)00070-7
|
[72] | Ermentrout GB, Galan RF, Urban NN (2008) Reliability, synchrony and noise. Trends Neurosci 31: 428–434. doi: 10.1016/j.tins.2008.06.002
|
[73] | Anderson JS, Lampl I, Gillespie DC, Ferster D (2000) The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290: 1968–1972. doi: 10.1126/science.290.5498.1968
|
[74] | Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506. doi: 10.1126/science.7770778
|
[75] | Rulkov NF, Timofeev I, Bazhenov M (2004) Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci 17: 203–223. doi: 10.1023/b:jcns.0000037683.55688.7e
|
[76] | Rulkov NF, Bazhenov M (2008) Oscillations and synchrony in large-scale cortical network models. J Biol Phys 34: 279–299. doi: 10.1007/s10867-008-9079-y
|
[77] | Bazhenov M, Stopfer M (2010) Forward and back: motifs of inhibition in olfactory processing. Neuron 67: 357–358. doi: 10.1016/j.neuron.2010.07.023
|
[78] | Timofeev I, Bazhenov M (2005) Mechanisms and biological role of thalamocortical oscillations. Trends in Chronobiology Research: 1–47.
|
[79] | Pouille F, Scanziani M (2001) Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 293: 1159–1163. doi: 10.1126/science.1060342
|
[80] | Assisi C, Stopfer M, Laurent G, Bazhenov M (2007) Adaptive regulation of sparseness by feedforward inhibition. Nat Neurosci 10: 1176–1184. doi: 10.1038/nn1947
|
[81] | Stokes CC, Isaacson JS (2011) From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67: 452–465. doi: 10.1016/j.neuron.2010.06.029
|
[82] | Mittmann W, Koch U, Hausser M (2005) Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J Physiol 563: 369–378. doi: 10.1113/jphysiol.2004.075028
|
[83] | Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215. doi: 10.1126/science.275.5297.213
|
[84] | Rulkov NF (2002) Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E Stat Nonlin Soft Matter Phys 65: 041922. doi: 10.1103/physreve.65.041922
|
[85] | Bazhenov M, Rulkov NF, Fellous JM, Timofeev I (2005) Role of network dynamics in shaping spike timing reliability. Phys Rev E Stat Nonlin Soft Matter Phys 72: 041903. doi: 10.1103/physreve.72.041903
|