全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

In-Air Evoked Potential Audiometry of Grey Seals (Halichoerus grypus) from the North and Baltic Seas

DOI: 10.1371/journal.pone.0090824

Full-Text   Cite this paper   Add to My Lib

Abstract:

In-air anthropogenic sound has the potential to affect grey seal (Halichoerus grypus) behaviour and interfere with acoustic communication. In this study, a new method was used to deliver acoustic signals to grey seals as part of an in-air hearing assessment. Using in-ear headphones with adapted ear inserts allowed for the measurement of auditory brainstem responses (ABR) on sedated grey seals exposed to 5-cycle (2-1-2) tone pips. Thresholds were measured at 10 frequencies between 1–20 kHz. Measurements were made using subcutaneous electrodes on wild seals from the Baltic and North Seas. Thresholds were determined by both visual and statistical approaches (single point F-test) and good agreement was obtained between the results using both methods. The mean auditory thresholds were ≤40 dB re 20 μPa peak equivalent sound pressure level (peSPL) between 4–20 kHz and showed similar patterns to in-air behavioural hearing tests of other phocid seals between 3 and 20 kHz. Below 3 kHz, a steep reduction in hearing sensitivity was observed, which differed from the rate of decline in sensitivity obtained in behavioural studies on other phocids. Differences in the rate of decline may reflect influence of the ear inserts on the ability to reliably transmit lower frequencies or interference from the structure of the distal end of the ear canal.

References

[1]  Siebert U, Müller S, Gilles A, Sundermeyer J, Narberhaus I (2012) Species profiles marine mammals. In: Narberhaus I, Krause J, Bernitt U, editors. Threatened biodiversity in the German North and Baltic Seas - Senisitivity towards human activities and the effects of climate change. Bonn: Federal Agency for Nature Conservation. 488–541.
[2]  Reijnders PJH, Brasseur SMJM, Borchardt T, Camphuysen K, Czeck R, et al.. (2009) Marine Mammals: Thematic Report No. 20. In: Marencic H, de Vlas J, editors. Wilhelmshaven, Germany: Common Wadden Sea Secretariat. 1–16.
[3]  H?rk?nen T, Brasseur S, Teilmann J, Vincent C, Dietz R, et al. (2007) Status of grey seals along mainland Europe from the Southwestern Baltic to France. NAMMCO Scientific Publications 6: 57–68. doi: 10.7557/3.2721
[4]  Herrmann C, Harder K, Schnick H (2007) Robben an der Küste Mecklenburg-Vorpommerns: Ergebnisse des Monitorings vom Februar 2007 bis Mai 2008. Naturschutzarbeit MV 50: 56–69.
[5]  BfN - Bundesamt für Naturschutz (2007) Nationaler Bericht 2007 - Bewertung der FFH-Arten. Available: http://www.bfn.de/0316_bewertung_arten.h?tml>. Accessed 25th August 2010.
[6]  EU COM - EUROPEAN COMMISSION (2010) Habitats directive reporting acc. to Art. 17. Available: http://ec.europa.eu/environment/nature/k?nowledge/rep_ habitats/index_en.htm>. Accessed 25th August 2010.
[7]  OSPAR Commission (2000) Quality Status Report 2000. OSPAR Commission, London. 108+ vii pp.
[8]  Breton S-P, Moe G (2009) Status, plans and technologies for offshore wind turbines in Europe and North America. J Acoust Soc Am 34: 646–654. doi: 10.1016/j.renene.2008.05.040
[9]  BMWI - Bundesministerium für Wirtschaft und Technologie (2011) Research for an environmentally sound, reliable and affordable energy supply. 6th Energy Research Programme of the Federal Government. Available: http://www.bmwi.de/EN/Service/publicatio?ns,did=477502.html>. Accessed 13th August 2012.
[10]  Finneran JJ, Schlundt CE, Dear R, Carder DA, Ridgway SH (2002) Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun. J Acoust Soc Am 111: 2929–2940. doi: 10.1121/1.1479150
[11]  Nachtigall PE, Supin AY, Pawloski J, Au WWL (2004) Temporary threshold shifts after noise exposure in the bottlenose dolphin (Tursiops truncatus) measured using evoked auditory potentials. Mar Mamm Sci 20: 673–687. doi: 10.1111/j.1748-7692.2004.tb01187.x
[12]  NRC - National Research Council (2005) Marine mammal populations and ocean noise. Determining when noise causes biologically significant effects. The National Academies Press, Washington D.C.
[13]  Kastak D, Reichmuth C, Holt MM, Mulsow J, Southall BL, et al. (2007) Onset, growth, and recovery of in-air temporary threshold shift in a California sea lion (Zalophus californianus). J Acoust Soc Am 122: 2916–2924. doi: 10.1121/1.2783111
[14]  Ralls K, Fiorelli P, Gish S (1985) Vocalizations and vocal mimicry in captive harbor seals, Phoca vitulina. Can J Zool 63: 1050–1056. doi: 10.1139/z85-157
[15]  Asselin S, Hammill MO, Barrette C (1993) Underwater vocalizations of ice breeding grey seals. Can J Zool 71: 2211–2219. doi: 10.1139/z93-310
[16]  Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science (New York, NY) 293: 102–104. doi: 10.1126/science.1060514
[17]  King JE (1991) Seals of the world. Comstock Pub. Associates, 1991.
[18]  Dudzinski KM, Thomas JA, Gregg JD (2009) Communication in marine mammals. In: Perrin W, Würsig B, Thewissen J, editors. Encyclopedia of marine mammals. Amsterdam: Academic Press. 260–269.
[19]  Thomas JA, Fisher SR, Evans WE, Awbrey FT (1983) Ultrasonic vocalizations of leopard seals (Hydrurga leptonyx). Antarct J 17: 186.
[20]  Thomson DH, Richardson WJ (1995) Marine mammal sounds. In: Richardson WJ, Greene CR, Malme CI, Thomson DH, editors. Marine Mammals and Noise. New York: Academic Press. 159–204.
[21]  Schevill WE, Watkins WA, Ray C (1963) Underwater Sounds of Pinnipeds. Science (New York, NY) 141: 50–53. doi: 10.1126/science.141.3575.50
[22]  Oliver GW (1978) Navigation in mazes by a grey seal, Halichoerus grypus (Fabricius). Behaviour 67: 97–114. doi: 10.1163/156853978x00279
[23]  Kastak D, Schusterman RJ (1999) In-air and underwater hearing sensitivity of a northern elephant seal (Mirounga angustirostris). Can J Zool 77: 1751–1758. doi: 10.1139/cjz-77-11-1751
[24]  Kastak D, Southall BL, Schusterman RJ, Kastak CR (2005) Underwater temporary threshold shift in pinnipeds: Effects of noise level and duration. J Acoust Soc Am 118: 3154–3163. doi: 10.1121/1.2047128
[25]  Southall BL, Bowles AE, Ellison WT, Finneran JJ, Gentry RL, et al. (2007) Marine mammal noise exposure criteria: Initial Scientific recommendations. Aquat Mamm 33: 411–522. doi: 10.1080/09524622.2008.9753846
[26]  Ridgway SH, Joyce PL (1975) Studies on seal brain by radiotelemetry. ICES J Mar Sci 169: 81–91.
[27]  Wolski LF, Anderson RC, Bowles AE, Yochem PK (2003) Measuring hearing in the harbor seal (Phoca vitulina): Comparison of behavioral and auditory brainstem response techniques. J Acoust Soc Am 113: 629–637. doi: 10.1121/1.1527961
[28]  Lucke K (2008) Auditory studies on marine mammals. Christian-Albrechts-Universit?t zu Kiel.
[29]  Finneran JJ (2009) Evoked response study tool: a portable, rugged system for single and multiple auditory evoked potential measurements. J Acoust Soc Am 126: 491–500. doi: 10.1121/1.3148214
[30]  Finneran JJ (2008) Evoked Response Study Tool (EVREST) User’s Guide. SSC San Diego Technical Document 3226 (SSC San Diego, San Diego).
[31]  Sundermeyer J (2006) Untersuchungen zur Optimierung der AEP-Methode an Robben Christian-Albrechts-Universit?t zu Kiel.
[32]  Jewett DL, Williston JS (1971) Auditory-evoked far fields averaged from the scalp of humans. Brain 94: 681–696. doi: 10.1093/brain/94.4.681
[33]  Elberling C, Don M (1984) Quality Estimation of Averaged Auditory Brainstem Responses. Scand Audiol 13: 187–197. doi: 10.3109/14992028409043059
[34]  Terhune J, Ronald K (1971) The harp seal, Pagophilus groenlandicus (Erxleben, 1777). X. The air audiogram. Can J Zool 49: 385–390. doi: 10.1139/z71-057
[35]  Turnbull SD, Terhune JM (1990) White noise and pure tone masking of pure tone thresholds of a harbour seal listening in air and underwater. Can J Zool 68: 2090–2097. doi: 10.1139/z90-291
[36]  Kastak D, Schusterman RJ (1998) Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology. J Acoust Soc Am 103: 2216–2228. doi: 10.1121/1.421367
[37]  Finneran JJ, Houser DS (2006) Comparison of in-air evoked potential and underwater behavioral hearing thresholds in four bottlenose dolphins (Tursiops truncatus). J Acoust Soc Am 119: 3181–3192. doi: 10.1121/1.2180208
[38]  Houser DS, Finneran JJ (2006) Variation in the hearing sensitivity of a dolphin population determined through the use of evoked potential audiometry. J Acoust Soc Am 120: 4090–4099. doi: 10.1121/1.2357993
[39]  Reichmuth C, Holt MM, Mulsow J, Sills JM, Southall BL (2013) Comparative assessment of amphibious hearing in pinnipeds. J Comp Physiol A 199: 491–507. doi: 10.1007/s00359-013-0813-y
[40]  Mulsow J, Finneran JJ, Houser DS (2011) California sea lion (Zalophus californianus) aerial hearing sensitivity measured using auditory steady-state response and psychophysical methods. J Acoust Soc Am129: 2298–2306. doi: 10.1121/1.3552882
[41]  Houser DS, Crocker DE, Reichmuth C, Mulsow J, Finneran JJ (2007) Auditory Evoked Potentials in Northern Elephant Seals (Mirounga angustirostris). Aquat Mamm 33: 110–121. doi: 10.1578/am.33.1.2007.110
[42]  M?hl B (1968) Auditory sensitivity of the common seal in air and water. J Aud Res 8: 27–38.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133