全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

High Content Image Analysis Identifies Novel Regulators of Synaptogenesis in a High-Throughput RNAi Screen of Primary Neurons

DOI: 10.1371/journal.pone.0091744

Full-Text   Cite this paper   Add to My Lib

Abstract:

The formation of synapses, the specialized points of chemical communication between neurons, is a highly regulated developmental process fundamental to establishing normal brain circuitry. Perturbations of synapse formation and function causally contribute to human developmental and degenerative neuropsychiatric disorders, such as Alzheimer's disease, intellectual disability, and autism spectrum disorders. Many genes controlling synaptogenesis have been identified, but lack of facile experimental systems has made systematic discovery of regulators of synaptogenesis challenging. Thus, we created a high-throughput platform to study excitatory and inhibitory synapse development in primary neuronal cultures and used a lentiviral RNA interference library to identify novel regulators of synapse formation. This methodology is broadly applicable for high-throughput screening of genes and drugs that may rescue or improve synaptic dysfunction associated with cognitive function and neurological disorders.

References

[1]  Waites CL, Craig AM, Garner CC (2005) Mechanisms of vertebrate synaptogenesis. Annual Review of Neuroscience 28: 251–274. doi: 10.1146/annurev.neuro.27.070203.144336
[2]  Boda B, Dubos A, Muller D (2010) Signaling mechanisms regulating synapse formation and function in mental retardation. Current Opinion in Neurobiology 20: 519–527. doi: 10.1016/j.conb.2010.03.012
[3]  Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience 14: 285–293. doi: 10.1038/nn.2741
[4]  Ting JT, Peca J, Feng GP (2012) Functional Consequences of Mutations in Postsynaptic Scaffolding Proteins and Relevance to Psychiatric Disorders. Annual Review of Neuroscience, Vol 35 35: 49–71. doi: 10.1146/annurev-neuro-062111-150442
[5]  Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM (2006) Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods 3: 715–719. doi: 10.1038/nmeth924
[6]  Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, et al.. (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biology 7..
[7]  Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. doi: 10.1038/nmeth.2089
[8]  Sato YNS, Shiraga N, Atsumi H, Yoshida S, Koller T, et al. (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical image analysis 2: 143–168. doi: 10.1016/s1361-8415(98)80009-1
[9]  Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetic 9: 62–66. doi: 10.1109/tsmc.1979.4310076
[10]  Alvarez VA, Sabatini BL (2007) Anatomical and physiological plasticity of dendritic spines. Annual Review of Neuroscience 30: 79–97. doi: 10.1146/annurev.neuro.30.051606.094222
[11]  Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, et al. (2009) An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers. Neuron 61: 734–749. doi: 10.1016/j.neuron.2009.01.017
[12]  Paradis S, Harrar DB, Lin YX, Koon AC, Hauser JL, et al. (2007) An RNAi-based approach identifies molecules required for glutamatergic and GABAergic synapse development. Neuron 53: 217–232. doi: 10.1016/j.neuron.2006.12.012
[13]  Shi P, Scott MA, Ghosh B, Wan DP, Wissner-Gross Z, et al.. (2011) Synapse microarray identification of small molecules that enhance synaptogenesis. Nature Communications 2..
[14]  Brigidi GS, Bamji SX (2011) Cadherin-catenin adhesion complexes at the synapse. Current Opinion in Neurobiology 21: 208–214. doi: 10.1016/j.conb.2010.12.004
[15]  Chen Y, Fu AK, Ip NY (2013) Axin: An emerging key scaffold at the synapse. Iubmb Life 65: 685–691. doi: 10.1002/iub.1184
[16]  Sanhueza M, Lisman J (2013) The CaMKII/NMDAR complex as a molecular memory. Molecular Brain 6: 1–8. doi: 10.1186/1756-6606-6-10
[17]  Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269: 1737–1740. doi: 10.1126/science.7569905
[18]  Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540. doi: 10.1016/0896-6273(94)90210-0
[19]  Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68: 469–478. doi: 10.1046/j.1471-4159.1997.68020469.x
[20]  Bamji SX, Shimazu K, Kimes N, Huelsken J, Birchmeier W, et al. (2003) Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40: 719–731. doi: 10.1016/s0896-6273(03)00718-9
[21]  Fang WQ, Ip JP, Li R, Ng YP, Lin SC, et al. (2011) Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. Journal of Neuroscience 31: 13613–13624. doi: 10.1523/jneurosci.3120-11.2011
[22]  Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, et al. (2007) Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56: 823–837. doi: 10.1016/j.neuron.2007.09.035
[23]  Okuda T, Yu LM, Cingolani LA, Kemler R, Goda Y (2007) beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc Natl Acad Sci U S A 104: 13479–13484. doi: 10.1073/pnas.0702334104
[24]  Marin O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13: 107–120. doi: 10.1038/nrn3155
[25]  Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, et al. (2012) De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Molecular Psychiatry 17: 142–153. doi: 10.1038/mp.2011.154
[26]  Lionel AC, Vaags AK, Sato D, Gazzellone MJ, Mitchell EB, et al. (2013) Rare exonic deletions implicate the synaptic organizer Gephyrin (GPHN) in risk for autism, schizophrenia and seizures. Human Molecular Genetics 22: 2055–2066. doi: 10.1093/hmg/ddt056
[27]  Noh HJ, Ponting CP, Boulding HC, Meader S, Betancur C, et al. (2013) Network topologies and convergent aetiologies arising from deletions and duplications observed in individuals with autism. Plos Genetics 9: e1003523. doi: 10.1371/journal.pgen.1003523
[28]  Gejman PV, Sanders AR, Kendler KS (2011) Genetics of Schizophrenia: New Findings and Challenges. Annual Review of Genomics and Human Genetics, Vol 12 12: 121–144. doi: 10.1146/annurev-genom-082410-101459
[29]  Buxbaum JD, Daly MJ, Devlin B, Lehner T, Roeder K, et al. (2012) The Autism Sequencing Consortium: Large-Scale, High-Throughput Sequencing in Autism Spectrum Disorders. Neuron 76: 1052–1056. doi: 10.1016/j.neuron.2012.12.008
[30]  Hempel CM, Sivula M, Levenson JM, Rose DM, Li B, et al. (2011) A System for Performing High Throughput Assays of Synaptic Function. Plos One 6: e25999. doi: 10.1371/journal.pone.0025999

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133