Molecular Recognition of the Neurotransmitter Acetylcholine by an Acetylcholine Binding Protein Reveals Determinants of Binding to Nicotinic Acetylcholine Receptors
Despite extensive studies on nicotinic acetylcholine receptors (nAChRs) and homologues, details of acetylcholine binding are not completely resolved. Here, we report the crystal structure of acetylcholine bound to the receptor homologue acetylcholine binding protein from Lymnaea stagnalis. This is the first structure of acetylcholine in a binding pocket containing all five aromatic residues conserved in all mammalian nAChRs. The ligand-protein interactions are characterized by contacts to the aromatic box formed primarily by residues on the principal side of the intersubunit binding interface (residues Tyr89, Trp143 and Tyr185). Besides these interactions on the principal side, we observe a cation-π interaction between acetylcholine and Trp53 on the complementary side and a water-mediated hydrogen bond from acetylcholine to backbone atoms of Leu102 and Met114, both of importance for anchoring acetylcholine to the complementary side. To further study the role of Trp53, we mutated the corresponding tryptophan in the two different acetylcholine-binding interfaces of the widespread α4β2 nAChR, i.e. the interfaces α4(+)β2(?) and α4(+)α4(?). Mutation to alanine (W82A on the β2 subunit or W88A on the α4 subunit) significantly altered the response to acetylcholine measured by oocyte voltage-clamp electrophysiology in both interfaces. This shows that the conserved tryptophan residue is important for the effects of ACh at α4β2 nAChRs, as also indicated by the crystal structure. The results add important details to the understanding of how this neurotransmitter exerts its action and improves the foundation for rational drug design targeting these receptors.
References
[1]
Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89: 73–120 doi:10.1152/physrev.00015.2008.
[2]
Taly A, Corringer PJ, Guedin D, Lestage P, Changeux JP (2009) Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov 8: 733–750 doi:10.1038/nrd2927.
[3]
Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346: 967–989 doi:10.1016/j.jmb.2004.12.031.
[4]
Unwin N, Fujiyoshi Y (2012) Gating movement of acetylcholine receptor caught by plunge-freezing. J Mol Biol 422: 617–634 doi:10.1016/j.jmb.2012.07.010.
[5]
Bocquet N, Nury H, Baaden M, Le Poupon C, Changeux JP, et al. (2009) X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation. Nature 457: 111–114 doi:10.1038/nature07462.
[6]
Hilf RJC, Dutzler R (2009) Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 457: 115–118 doi:10.1038/nature07461.
[7]
Hilf RJC, Dutzler R (2008) X-ray structure of a prokaryotic pentameric ligand-gated ion channel. Nature 452: 375–379 doi:10.1038/nature06717.
[8]
Zimmermann I, Dutzler R (2011) Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. PLoS Biol 9: e1001101 doi:10.1371/journal.pbio.1001101.
[9]
Hibbs RE, Gouaux E (2011) Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474: 54–60 doi:10.1038/nature10139.
[10]
Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci 10: 953–962 doi:10.1038/nn1942.
[11]
Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, et al. (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411: 269–276 doi:10.1038/35077011.
[12]
Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, et al. (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411: 261–268 doi:10.1038/35077000.
[13]
Du J, Dong H, Zhou HX (2012) Size matters in activation/inhibition of ligand-gated ion channels. Trends Pharmacol Sci 33: 482–493 doi:10.1016/j.tips.2012.06.005.
[14]
Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, et al. (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112: 535–542 doi:10.1016/S0022-2836(77)80200-3.
[15]
Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, et al. (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41: 907–914. doi: 10.1016/s0896-6273(04)00115-1
[16]
Hansen SB, Radic' Z, Talley TT, Molles BE, Deerinck T, et al. (2002) Tryptophan fluorescence reveals conformational changes in the acetylcholine binding protein. J Biol Chem 277: 41299–41302 doi:10.1074/jbc.C200462200.
[17]
Rohde LAH, Ahring PK, Jensen ML, Nielsen E?, Peters D, et al. (2012) Intersubunit bridge formation governs agonist efficacy at nicotinic acetylcholine α4β2 receptors: unique role of halogen bonding revealed. J Biol Chem 287: 4248–4259 doi:10.1074/jbc.M111.292243.
[18]
Li SX, Huang S, Bren N, Noridomi K, Dellisanti CD, et al. (2011) Ligand-binding domain of an α7-nicotinic receptor chimera and its complex with agonist. Nat Neurosci 14: 1253–1259 doi:10.1038/nn.2908.
[19]
Nemecz A, Taylor P (2011) Creating an α7 nicotinic acetylcholine recognition domain from the acetylcholine-binding protein: crystallographic and ligand selectivity analyses. J Biol Chem 286: 42555–42565 doi:10.1074/jbc.M111.286583.
[20]
Brams M, Gay EA, Sáez JC, Guskov A, van Elk R, et al. (2011) Crystal structures of a cysteine-modified mutant in loop D of acetylcholine-binding protein. J Biol Chem 286: 4420–4428 doi:10.1074/jbc.M110.188730.
[21]
Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3: 102–114 doi:10.1038/nrn731.
[22]
Harps?e K, Ahring PK, Christensen JK, Jensen ML, Peters D, et al. (2011) Unraveling the high- and low-sensitivity agonist responses of nicotinic acetylcholine receptors. J Neurosci 31: 10759–10766. doi: 10.1523/jneurosci.1509-11.2011
[23]
Ussing CA, Hansen CP, Petersen JG, Jensen AA, Rohde LAH, et al. (2013) Synthesis, pharmacology, and biostructural characterization of novel α4β2 nicotinic acetylcholine receptor agonists. J Med Chem 56: 940–951 doi:10.1021/jm301409f.
[24]
Pan J, Chen Q, Willenbring D, Yoshida K, Tillman T, et al. (2012) Structure of the pentameric ligand-gated ion channel ELIC cocrystallized with its competitive antagonist acetylcholine. Nat Commun 3: 714 doi:10.1038/ncomms1703.
[25]
Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, et al. (1998) From ab initio quantum mechanics to molecular neurobiology: a cation-pi binding site in the nicotinic receptor. Proc Natl Acad Sci USA 95: 12088–12093. doi: 10.1073/pnas.95.21.12088
[26]
Blum AP, van Arnam EB, German LA, Lester HA, Dougherty DA (2013) Binding interactions with the complementary subunit of nicotinic receptors. J Biol Chem 288: 6991–6997 doi:10.1074/jbc.M112.439968.
[27]
Verdonk ML, Boks GJ, Kooijman H, Kanters JA, Kroon J (1993) Stereochemistry of charged nitrogen-aromatic interactions and its involvement in ligand-receptor binding. J Comput Aided Mol Des 7: 173–182 doi:10.1007/BF00126443.
[28]
Durrant JD, McCammon JA (2011) BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model 29: 888–893 doi:10.1016/j.jmgm.2011.01.004.
[29]
Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66: 125–132 doi:10.1107/S0907444909047337.
[30]
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235–242 doi:10.1107/S0907444910045749.
[31]
Zwart PH, Afonine PV, Grosse-Kunstleve RW, Hung LW, Ioerger TR, et al. (2008) Automated structure solution with the PHENIX suite. Methods Mol Biol 426: 419–435 doi:_10.1007/978-1-60327-058-8_28.
[32]
Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132 doi:10.1107/S0907444904019158.
[33]
Nielsen SF, Nielsen E?, Olsen GM, Liljefors T, Peters D (2000) Novel potent ligands for the central nicotinic acetylcholine receptor: synthesis, receptor binding, and 3D-QSAR analysis. J Med Chem 43: 2217–2226 doi:10.1021/jm990973d.
[34]
Timmermann DBD, Gr?nlien JH, Kohlhaas KL, Nielsen E?, Dam E, et al. (2007) An allosteric modulator of the α7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. J Pharmacol Exp Ther 323: 294–307 doi:10.1124/jpet.107.120436.vidual.
[35]
Harps?e K, Hald H, Timmermann DB, Jensen ML, Dyhring T, et al. (2013) Molecular determinants of subtype-selective efficacies of cytisine and the novel compound NS3861 at heteromeric nicotinic acetylcholine receptors. J Biol Chem 288: 2559–2570 doi:10.1074/jbc.M112.436337.