[1] | Uetz GW, Boyle JAY, Hieber CS, Wilcox RS (2002) Antipredator benefits of group living in colonial web-building spiders: the “ early warning ” effect. Animal Behaviour 63: 445–452 doi:10.1006/anbe.2001.1918.
|
[2] | Wrona FJ, Dixon RWJ (1991) Group size and predation risk: a field analysis of encounter and dilution effects. The American Naturalist 137: 186–201. doi: 10.1086/285153
|
[3] | Hass C, Valenzuela D (2002) Anti-predator benefits of group living in white-nosed coatis (Nasua narica). Behavioral Ecology and Sociobiology 51: : 570–578. Available: http://www.springerlink.com/openurl.asp??genre=article&id=doi:10.1007/s00265-002-?0463-5. Accessed 4 October 2012.
|
[4] | Machado G (2002) Maternal care, defensive behavior, and sociality in neotropical Goniosoma harvestmen (Arachnida, Opiliones). Insectes Sociaux 49: 388–393 Available: http://www.springerlink.com/index/10.100?7/PL00012663.
|
[5] | Whitehouse ME, Lubin Y (2005) The functions of societies and the evolution of group living: spider societies as a test case. Biological Reviews 80: 347–361 Available: http://www.ncbi.nlm.nih.gov/pubmed/16094?803.
|
[6] | Erwin RM (1978) Coloniality in terns: the role of social feeding. The condor 80: 211–215. doi: 10.2307/1367920
|
[7] | Jakob EM (1991) Costs and benefits of group living for pholcid spiderlings: losing food, saving silk. Animal Behaviour 41: 711–722. doi: 10.1016/s0003-3472(05)80908-x
|
[8] | Fritz H, de Garine-Wichatitsky M (1996) Foraging in a social antelope: effects of group size on foraging choices and resource perception in impala. Journal of Animal Ecology 65: 736–742. doi: 10.2307/5672
|
[9] | Ruch J, Heinrich L, Bilde T, Schneider JM (2009) Relatedness facilitates cooperation in the subsocial spider, Stegodyphus tentoriicola. BMC evolutionary biology 9: 257. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2774699&tool=pmcentrez?&rendertype=abstract. Accessed 5 October 2012.
|
[10] | Godfrey SS, Bull CM, Murray K, Gardner MG (2006) Transmission mode and distribution of parasites among groups of the social lizard Egernia stokesii. Parasitology research 99: : 223–230. Available: http://www.ncbi.nlm.nih.gov/pubmed/16541?264. Accessed 30 October 2013.
|
[11] | Schmid-Hempel P (1998) Parasites in Social Insects. Princeton, New Jersey: Princeton University Press.
|
[12] | Poiani A (1992) Ectoparasitism as a possible cost of social life: a comparative analysis using Australian passerines (Passeriformes). Oecologia 92: 429–441. doi: 10.1007/bf00317470
|
[13] | Rifkin JL, Nunn CL, Garamszegi LZ (2012) Do animals living in larger groups experience greater parasitism? A meta-analysis. The American naturalist 180: : 70–82. Available: http://www.ncbi.nlm.nih.gov/pubmed/22673?652. Accessed 4 October 2012.
|
[14] | Shykoff JA, Schmid-Hempel P (1991) Parasites and the advantage of genetic variability within social insect colonies. Proceedings of the Royal Society of London Series B 243: 55–58. doi: 10.1098/rspb.1991.0009
|
[15] | Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annual review of entomology 50: : 529–551. Available: http://www.ncbi.nlm.nih.gov/pubmed/15471?530. Accessed 26 July 2011.
|
[16] | Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution 11: 317–321. doi: 10.1016/0169-5347(96)10039-2
|
[17] | Wilson K, Reeson A (1998) Density-dependent prophylaxis: evidence from Lepidoptera – baculovirus interactions? Ecological Entomology 23: 100–101. doi: 10.1046/j.1365-2311.1998.00107.x
|
[18] | Wilson K, Thomas MB, Blanford S, Doggett M, Simpson SJ, et al. (2002) Coping with crowds: density-dependent disease resistance in desert locusts. Proceedings of the National Academy of Sciences 99: 5471–5475 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=122793&tool=pmcentrez&?rendertype=abstract.
|
[19] | Reeson AF, Wilson K, Gunn A, Hails RS, Goulson D (1998) Baculovirus resistance in the noctuid Spodoptera exempta is phenotypically plastic and responds to population density. Proceedings of the Royal Society B: Biological Sciences 265: 1787–1791 Available: http://rspb.royalsocietypublishing.org/c?gi/doi/10.1098/rspb.1998.0503.
|
[20] | Barnes AI, Siva-Jothy MT (2000) Density-dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proceedings of the Royal Society of London Series B 267: 177–182 Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=1690519&tool=pmcentrez?&rendertype=abstract.
|
[21] | Bos N, Lefèvre T, Jensen AB, D'Ettorre P (2012) Sick ants become unsociable. Journal of evolutionary biology 25: : 342–351. Available: http://www.ncbi.nlm.nih.gov/pubmed/22122?288. Accessed 15 November 2012.
|
[22] | Cremer S, Armitage S, Schmid-Hempel P (2007) Social immunity. Current biology 17: : 693–702. Available: http://www.ncbi.nlm.nih.gov/pubmed/17714?663. Accessed 26 October 2012.
|
[23] | Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annual review of entomology 54: : 405–423. Available: http://www.ncbi.nlm.nih.gov/pubmed/18793?100. Accessed 29 October 2012.
|
[24] | Stow A, Briscoe D, Gillings M, Holley M, Smith S, et al.. (2007) Antimicrobial defences increase with sociality in bees. Biology letters 3: : 422–424. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2390670&tool=pmcentrez?&rendertype=abstract. Accessed 17 August 2012.
|
[25] | Koidsumi K (1957) Antifungal action of cuticular lipids in insects. Journal of Insect Physiology 1: 40–51 Available: http://linkinghub.elsevier.com/retrieve/?pii/0022191057900227.
|
[26] | Smith RJ, Grula EA (1982) Toxic components on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. Journal of Invertebrate Pathology 39: 15–22 Available: http://linkinghub.elsevier.com/retrieve/?pii/0022201182901537.
|
[27] | Evans TA (1998) Offspring recognition by mother crab spiders with extreme maternal care. Proceedings of the Royal Society B 265: 129–134. doi: 10.1098/rspb.1998.0273
|
[28] | Freeland AWJ (1983) Parasites and the coexistence of animal host species. The American naturalist 121: 223–236. doi: 10.1086/284052
|
[29] | Unglaub B, Ruch J, Herberstein ME, Schneider JM (2013) Hunted hunters? Effect of group size on predation risk and growth in the Australian subsocial crab spider Diaea ergandros.. Behavioral Ecology and Sociobiology 67: : 785–794 Available: http://link.springer.com/10.1007/s00265-?013-1502-0. Accessed 31 October 2013.
|
[30] | Evans TA (1995) Two new social crab spiders (Thomisidae: Diaea) from eastern Australia, their natural history and geographic range. Records of the Western Australian Museum 52: 151–158.
|
[31] | Avilés L (1997) Causes and consequences of cooperation and permanent-sociality in spiders. In: Choe C, Crespi B, editors. The evolution of social behaviour in insects and arachnids. Cambridge: Cambridge University Press. pp. 476–498.
|
[32] | Evans TA, Goodisman MAD (2002) Nestmate relatedness and population genetic structure of the Australian social crab spider Diaea ergandros (Araneae: Thomisidae). Molecular ecology 11: 2307–2316 Available: http://www.ncbi.nlm.nih.gov/pubmed/12406?241.
|
[33] | Hahn DA, Denlinger DL (2011) Energetics of insect diapause. Annual review of entomology 56: : 103–121. Available: http://www.ncbi.nlm.nih.gov/pubmed/20690?828. Accessed 27 May 2013.
|
[34] | Crawley MJ (2007) The R Book. London, UK: Wiley.
|
[35] | R Development Core Team (2009) R: a language and environment for statistical computing. Austria: R Foundation for Statistical Computing.
|
[36] | Stow A, Beattie A (2008) Chemical and genetic defenses against disease in insect societies. Brain, behavior, and immunity 22: : 1009–1013. Available: http://www.ncbi.nlm.nih.gov/pubmed/18472?394. Accessed 30 May 2013.
|
[37] | James R., Buckner J., Freeman T. (2003) Cuticular lipids and silverleaf whitefly stage affect conidial germination of Beauveria bassiana and Paecilomyces fumosoroseus. Journal of Invertebrate Pathology 84: : 67–74. Available: http://linkinghub.elsevier.com/retrieve/?pii/S002220110300140X. Accessed 15 July 2013.
|
[38] | Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Developmental and comparative immunology 23: 329–344 Available: http://www.ncbi.nlm.nih.gov/pubmed/10426?426.
|
[39] | Ortiz-Urquiza A, Keyhani N (2013) Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle. Insects 4: : 357–374. Available: http://www.mdpi.com/2075-4450/4/3/357/. Accessed 20 January 2014.
|
[40] | Selitrennikoff CP (2001) Antifungal proteins. Applied and Environmental Microbiology 67: 2883–2894 doi:10.1128/AEM.67.7.2883.
|
[41] | Wilson K, Cotter SC, Reeson AF, Pell JK (2001) Melanism and disease resistance in insects. Ecology Letters 4: 637–649 Available: http://doi.wiley.com/10.1046/j.1461-0248?.2001.00279.x.
|
[42] | González-Santoyo I, Córdoba-Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomologia Experimentalis et Applicata 142: : 1–16. Available: http://doi.wiley.com/10.1111/j.1570-7458?.2011.01187.x. Accessed 3 March 2013.
|
[43] | Gross J, Muller C, Vilcinskas a, Hilker M (1998) Antimicrobial activity of exocrine glandular secretions, hemolymph, and larval regurgitate of the mustard leaf beetle phaedon cochleariae. Journal of invertebrate pathology 72: 296–303 Available: http://www.ncbi.nlm.nih.gov/pubmed/97843?54.
|
[44] | Gross J, Schumacher K, Schmidtberg H, Vilcinskas A (2008) Protected by fumigants: beetle perfumes in antimicrobial defense. Journal of chemical ecology 34: : 179–188. Available: http://www.ncbi.nlm.nih.gov/pubmed/18236?110. Accessed 20 January 2014.
|
[45] | Kimbrell D a, Beutler B (2001) The evolution and genetics of innate immunity. Nature reviews Genetics 2: 256–267 Available: http://www.ncbi.nlm.nih.gov/pubmed/11283?698.
|
[46] | Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nature immunology 6: : 973–979. Available: http://www.ncbi.nlm.nih.gov/pubmed/16177?805. Accessed 18 July 2011.
|
[47] | Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann J a (1996) The dorsoventral regulatory gene cassette sp?tzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973–983 Available: http://www.ncbi.nlm.nih.gov/pubmed/88086?32.
|
[48] | Adamo SA, Bartlett A, Le J, Spencer N, Sullivan K (2010) Illness-induced anorexia may reduce trade-offs between digestion and immune function. Animal Behaviour 79: : 3–10. Available: http://linkinghub.elsevier.com/retrieve/?pii/S0003347209004631. Accessed 28 December 2011.
|
[49] | Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annual review of Ecology and Systematics 32: 95–126. doi: 10.1146/annurev.ecolsys.32.081501.114006
|
[50] | González-Tokman D, Córdoba-Aguilar A, González-Santoyo I, Lanz-Mendoza H (2011) Infection effects on feeding and territorial behaviour in a predatory insect in the wild. Animal Behaviour 81: : 1185–1194. Available: http://dx.doi.org/10.1016/j.anbehav.2011?.02.027. Accessed 25 November 2011.
|
[51] | Bilde T, Lubin Y (2001) Kin recognition and cannibalism in a subsocial spider. Journal of Evolutionary Biology 14: 959–966. doi: 10.1046/j.1420-9101.2001.00346.x
|
[52] | Wise DH (2006) Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annual review of entomology 51: : 441–465. Available: http://www.ncbi.nlm.nih.gov/pubmed/16332?219. Accessed 22 May 2013.
|