全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Symbolic Number Abilities Predict Later Approximate Number System Acuity in Preschool Children

DOI: 10.1371/journal.pone.0091839

Full-Text   Cite this paper   Add to My Lib

Abstract:

An ongoing debate in research on numerical cognition concerns the extent to which the approximate number system and symbolic number knowledge influence each other during development. The current study aims at establishing the direction of the developmental association between these two kinds of abilities at an early age. Fifty-seven children of 3–4 years performed two assessments at 7 months interval. In each assessment, children's precision in discriminating numerosities as well as their capacity to manipulate number words and Arabic digits was measured. By comparing relationships between pairs of measures across the two time points, we were able to assess the predictive direction of the link. Our data indicate that both cardinality proficiency and symbolic number knowledge predict later accuracy in numerosity comparison whereas the reverse links are not significant. The present findings are the first to provide longitudinal evidence that the early acquisition of symbolic numbers is an important precursor in the developmental refinement of the approximate number representation system.

References

[1]  Barth H, Kanwisher N, Spelke E (2003) The construction of large number representations in adults. Cognition 86: 201–221. doi: 10.1016/s0010-0277(02)00178-6
[2]  Gilmore CK, McCarthy SE, Spelke ES (2010) Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition 115: 394–406. doi: 10.1016/j.cognition.2010.02.002
[3]  Brannon EM (2002) The development of ordinal numerical knowledge in infancy. Cognition 83: 223–240. doi: 10.1016/s0010-0277(02)00005-7
[4]  Gallistel CR, Gelman R (2005) Mathematical cognition. In: Holyoak K, Morrison R, editors. The Cambridge handbook of thinking and reasoning. Cambridge, UK: Cambridge University Press. pp. 559–588.
[5]  Izard Vr, Sann C, Spelke ES, Streri A (2009) Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences 106: 10382–10385. doi: 10.1073/pnas.0812142106
[6]  Xu F, Spelke ES (2000) Large number discrimination in 6-month-old infants. Cognition 74: B1–B11. doi: 10.1016/s0010-0277(99)00066-9
[7]  Lipton JS, Spelke ES (2003) Origins of number sense: large-number discrimination in human infants. Psychol Sci 14: 396–401. doi: 10.1111/1467-9280.01453
[8]  Halberda J, Feigenson L (2008) Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Dev Psychol 44: 1457–1465. doi: 10.1037/a0012682
[9]  Pica P, Lemer C, Izard V, Dehaene S (2004) Exact and approximate arithmetic in an Amazonian indigene group. Science 306: 499–503. doi: 10.1126/science.1102085
[10]  Gelman R, Gallistel CR (1978) The child's understanding of number. Cambridge, MA: Harvard University Press.
[11]  Sekuler R, Mierkiewicz D (1977) Children's judgments of numerical inequality. Child Dev 48: 630–633. doi: 10.1111/j.1467-8624.1977.tb01208.x
[12]  Temple E, Posner MI (1998) Brain mechanisms of quantity are similar in 5-year-olds and adults. Proc Natl Acad Sci U S A 95: 7836–7841. doi: 10.1073/pnas.95.13.7836
[13]  Moyer RS, Landauer TK (1967) The time required for judgements of numerical inequality. Nature 215: 1519–1520. doi: 10.1038/2151519a0
[14]  Holloway ID, Ansari D (2009) Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children's mathematics achievement. J Exp Child Psychol 103: 17–29. doi: 10.1016/j.jecp.2008.04.001
[15]  Dehaene S (1997) The number sense: how the mind creates mathematics. New York: Oxford Univ. Press. 64–90 p.
[16]  Wynn K (1992) Addition and subtraction by human infants. Nature 358: 749–750. doi: 10.1038/358749a0
[17]  Carey S (2004) Bootstrapping and the origins of concepts. Daedalus 133: 59–68. doi: 10.1162/001152604772746701
[18]  Le Corre M, Carey S (2007) One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition 105: 395–438. doi: 10.1016/j.cognition.2006.10.005
[19]  Brannon EM, Van de Walle GA (2001) The development of ordinal numerical competence in young children. Cogn Psychol 43: 53–81. doi: 10.1006/cogp.2001.0756
[20]  Rousselle L, Palmers E, No?l M-P (2004) Magnitude comparison in preschoolers: what counts? Influence of perceptual variables. J Exp Child Psychol 87: 57–84. doi: 10.1016/j.jecp.2003.10.005
[21]  Wagner JB, Johnson SC (2011) An association between understanding cardinality and analog magnitude representations in preschoolers. Cognition 119: 10–22. doi: 10.1016/j.cognition.2010.11.014
[22]  Slaughter V, Kamppi D, Paynter J (2006) Toddler subtraction with large sets: further evidence for an analog-magnitude representation of number. Developmental Science 9: 33–39. doi: 10.1111/j.1467-7687.2005.00460.x
[23]  Huntley-Fenner G, Cannon E (2000) Preschoolers' magnitude comparisons are mediated by a preverbal analog mechanism. Psychol Sci 11: 147–152. doi: 10.1111/1467-9280.00230
[24]  Halberda J, Mazzocco MMM, Feigenson L (2008) Individual differences in non-verbal number acuity correlate with maths achievement. Nature 455: 665–668. doi: 10.1038/nature07246
[25]  Libertus ME, Feigenson L, Halberda J (2011) Preschool acuity of the approximate number system correlates with school math ability. Psychon Bull Rev 14: 1292–1300. doi: 10.1111/j.1467-7687.2011.01080.x
[26]  Inglis M, Attridge N, Batchelor S, Gilmore C (2011) Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychon Bull Rev 18..
[27]  Mundy E, Gilmore CK (2009) Children's mapping between symbolic and nonsymbolic representations of number. J Exp Child Psychol 103: 490–502. doi: 10.1016/j.jecp.2009.02.003
[28]  Lonnemann J, Linkersd?rfer J, Hasselhorn M, Lindberg S (2011) Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills. Journal of Neurolinguistics 24: 583–591. doi: 10.1016/j.jneuroling.2011.02.004
[29]  Price GR, Palmer D, Battista C, Ansari D (2012) Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychol (Amst) 140: 50–57. doi: 10.1016/j.actpsy.2012.02.008
[30]  Libertus M, Odic D, Halberda J (2012) Intuitive sense of number correlates with scores on college-entrance examination. Acta Psychol (Amst) 141: 373–379. doi: 10.1016/j.actpsy.2012.09.009
[31]  DeWind NK, Brannon EM (2012) Malleability of the approximate number system: effects of feedback and training. Frontiers in Cognitive Neuroscience 6: 1–10. doi: 10.3389/fnhum.2012.00068
[32]  Lyons IM, Beilock SL (2011) Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition 121: 256–261. doi: 10.1016/j.cognition.2011.07.009
[33]  Mazzocco MMM, Feigenson L, Halberda J (2011) Preschoolers' precision of the approximate number system predicts later school mathematics performance. PLoS ONE 6: e23749. doi: 10.1371/journal.pone.0023749
[34]  Mussolin C, Nys J, Leybaert J, Content A (2012) Relationships between approximate number system acuity and early symbolic number abilities. Trends in Neuroscience and Education 1: 21–31. doi: 10.1016/j.tine.2012.09.003
[35]  Libertus ME, Feigenson L, Halberda J (2013) Is approximate number precision a stable predictor of math ability? Learning and Individual Differences 25: 126–133. doi: 10.1016/j.lindif.2013.02.001
[36]  Ellis N, Large B (1988) The early stages of reading: A longitudinal study. Applied Cognitive Psychology 2: 47–76. doi: 10.1002/acp.2350020106
[37]  Crano WD, Mellon PM (1978) Causal influence of teachers' expectations on children's academic performance: A cross-lagged panel analysis. J Educ Psychol 70: 39–49. doi: 10.1037/0022-0663.70.1.39
[38]  Gathercole SE, Willis C, Emslie H, Baddeley AD (1992) Phonological memory and vocabulary development during the early school years: A longitudinal study. Dev Psychol 28: 887–898. doi: 10.1037/0012-1649.28.5.887
[39]  Trick L, Pylyshyn Z (1994) Why are small and large numbers enumerated differently? A limited capacity preattentive stage in vision. Psychol Rev 101: 80–102. doi: 10.1037/0033-295x.101.1.80
[40]  Schneider W, Eschmann A, Zuccolotto A (2002) E-prime reference guide. Pittsburgh, USA: Psychology Software Tools Inc.
[41]  Fuson KC (1988) Children's counting and concepts of number. New York, USA: Springer.
[42]  Van Nieuwenhoven C, No?l M-P, Grégoire J (2001) TEst DIagnostique des compétences de base en MATHématiques TEDI-MATH In: ECPA, editor.
[43]  von Aster MG, Dellatolas G (2006) ZAREKI-R: Batterie pour l'évaluation du traitement des nombres et du calcul chez l'enfant; Adaptation francaise. Paris: ECPA.
[44]  Raven J (1977) Raven's Coloured Progressive Matrices. London: H. K. Lewis.
[45]  Coquet F, Roustit J, Jeunier B (2007) La Batterie Evalo 2-6. évaluation du langage oral et des comportements non verbaux du jeune enfant. Rééducation Orthophonique 231: 203–226.
[46]  Corsi PM (1972) Human memory and the medial temporal region of the brain [thesis]. Montreal: Canada.
[47]  Chevrié-Muller C, Plaza M, editors (2001) Nouvelles Epreuves pour l'Examen du Langage (N-EEL). Paris: Les Editions du Centre de Psychologie Appliquée.
[48]  Mandler G, Shebo BJ (1982) Subitizing: An analysis of its component processes. J Exp Psychol Gen 111: 1–22.
[49]  Elzhov TV, Mullen KM, Spiess AN, Bolker B, Mullen MKM (2012) R interface to the Levenberg-Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. Available: http://cran.r-project.org/web/packages/m?inpack.lm/index.html.
[50]  Williams EJ (1959) The comparison of regression variables. Journal of the Royal Statistical Society (Series B) 21: 396–399.
[51]  Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87: 245–251. doi: 10.1037/0033-2909.87.2.245
[52]  Sikora P, Moore S, Greenberg E, Grunberg L (2008) Downsizing and alcohol use: A cross-lagged longitudinal examination of the spillover hypothesis. Work & Stress 22: 51–68. doi: 10.1080/02678370801999651
[53]  Quartana PJ, Wickwire EM, Klick B, Grace E, Smith MT (2010) Naturalistic changes in insomnia symptoms and pain in temporomandibular joint disorder: A cross-lagged panel analysis. Pain 149: 325–331. doi: 10.1016/j.pain.2010.02.029
[54]  Brunswick N, Neil Martin G, Rippon G (2012) Early cognitive profiles of emergent readers: A longitudinal study. J Exp Child Psychol 111: 268–285. doi: 10.1016/j.jecp.2011.08.001
[55]  Luo YLL, Kovas Y, Haworth CMA, Plomin R (2011) The etiology of mathematical self-evaluation and mathematics achievement: Understanding the relationship using a cross-lagged twin study from ages 9 to 12. Learning and Individual Differences 21: 710–718. doi: 10.1016/j.lindif.2011.09.001
[56]  Rogosa D (1980) A critique of cross-lagged correlation. Psychol Bull 88: 245–258. doi: 10.1037/0033-2909.88.2.245
[57]  Piazza M, Facoetti A, Trussardi AN, Berteletti I, Conte S, et al. (2010) Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116: 33–41. doi: 10.1016/j.cognition.2010.03.012
[58]  Lindskog M, Winman A, Juslin P, Poom L (2013) Measuring acuity of the Approximate Number System reliably and validly: The evaluation of an adaptive test procedure. Frontiers in Psychology 4..
[59]  Inglis M, Gilmore C (2014) Indexing the approximate number system. Acta Psychol (Amst) 145: 147–155. doi: 10.1016/j.actpsy.2013.11.009
[60]  Gilmore CK, McCarthy SE, Spelke ES (2007) Symbolic arithmetic knowledge without instruction. Nature 447: 589–591. doi: 10.1038/nature05850
[61]  Carey S (2001) Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind & Language and Speech 16: 37–55. doi: 10.1111/1468-0017.00155
[62]  Carey S, editor (2009) The origin of concepts (Oxford series in cognitive development). New York: Oxford University Press.
[63]  Verguts T, Fias W (2004) Representation of number in animals and humans: A neural model. J Cogn Neurosci 16: 1493–1504. doi: 10.1162/0898929042568497
[64]  Nys J, Ventura P, Fernandes T, Querido L, Leybaert J, et al. (2013) Does math education modify the approximate number system? A comparison of literate, ex-illiterate and illiterate adults. Trends in Neuroscience and Education 2: 13–22. doi: 10.1016/j.tine.2013.01.001
[65]  Landerl K, Bevan A, Butterworth B (2004) Developmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students. Cognition 93: 99–125. doi: 10.1016/j.cognition.2003.11.004
[66]  Geary DC (1993) Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychol Bull 114: 345–362. doi: 10.1037/0033-2909.114.2.345
[67]  Ostad SA (1997) Developmental differences in addition strategies: A comparison of mathematically disabled and mathematically normal children. Br J Educ Psychol 67: 345–357. doi: 10.1111/j.2044-8279.1997.tb01249.x
[68]  Shalev RS (2007) Prevalence of developmental dyscalculia. In: Berch DB, Mazzocco MMM, editors. Why is math so hard for some children? The nature and origins of mathematical learning difficulties and disabilities. Baltimore, MD: Paul H. Brookes Publishing Co. pp. 49–60.
[69]  De Smedt B, Gilmore CK (2011) Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. J Exp Child Psychol 108: 278–292. doi: 10.1016/j.jecp.2010.09.003
[70]  Rousselle L, No?l M-P (2007) Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition 102: 361–395. doi: 10.1016/j.cognition.2006.01.005
[71]  Mussolin C, Mejias S, No?l M-P (2010) Symbolic and non-symbolic number comparison in children with and without dyscalculia. Cognition 115: 10–25. doi: 10.1016/j.cognition.2009.10.006
[72]  Landerl K, Fussenegger B, Moll K, Willburger E (2009) Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. J Exp Child Psychol 103: 309–324. doi: 10.1016/j.jecp.2009.03.006
[73]  No?l M-P, Rousselle L (2011) Developmental changes in the profiles of dyscalculia: an explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience 5..
[74]  Mussolin C (2009) When [5] looks like [6] - A deficit of the number magnitude representation in developmental dyscalculia: Behavioural and brain-imaging investigation. Louvain-la-Neuve: Université Catholique de Louvain, Belgium.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133