Larvae of the Chinese oak silkmoth (Antheraea pernyi) are often affected by AVD (A. pernyi vomiting disease), whose causative agent has long been suspected to be a virus. In an unrelated project we discovered a novel positive sense single-stranded RNA virus that could reproduce AVD symptoms upon injection into healthy A. pernyi larvae. The genome of this virus is 10,163 nucleotides long, has a natural poly-A tail, and contains a single, large open reading frame flanked at the 5′ and 3′ ends by untranslated regions containing putative structural elements for replication and translation of the virus genome. The open reading frame is predicted to encode a 3036 amino acid polyprotein with four viral structural proteins (VP1-VP4) located in the N-terminal end and the non-structural proteins, including a helicase, RNA-dependent RNA polymerase and 3C-protease, located in the C-terminal end of the polyprotein. Putative 3C-protease and autolytic cleavage sites were identified for processing the polyprotein into functional units. The genome organization, amino acid sequence and phylogenetic analyses suggest that the virus is a novel species of the genus Iflavirus, with the proposed name of Antheraea pernyi Iflavirus (ApIV).
References
[1]
Ce S (2005) A study on Antheraea pernyi Vomit Disease in China. Liaoning Agricultural Sciences 4: 39–41.
[2]
Berman J (2005) Group IV Virus: single-stranded (+)Sense RNA. Taxonomic guide to infectious diseases. pp. 237–240.
[3]
Van Oers MM (2010) Genomics and biology of Iflaviruses. Insect Virology Caister: Norfolk: Academic Press. pp. 231–250.
[4]
Lu J, Zhang J, Wang X, Jiang H, Liu C, Hu Y (2006) In vitro and in vivo identification of structural and sequence elements in the 5′ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. J Gen Virol 87(Pt 12): 3667–3677. doi: 10.1099/vir.0.82090-0
[5]
Ongus JR, Roode EC, Pleij CW, Vlak JM, van Oers MM (2006) The 5′ non-translated region of Varroa destructor virus 1 (genus Iflavirus): structure prediction and IRES activity in Lymantria dispar cells. J Gen Virol 87: 3397–3407. doi: 10.1099/vir.0.82122-0
[6]
Roberts LO, Grappelli E (2009) An atypical IRES within the 5′UTR of a dicistrovirus genome. Virus Research 139: 157–165. doi: 10.1016/j.virusres.2008.07.017
De Rijk P, Wuyts J, De Wachter R (2003) RnaViz 2: animproved representation of RNA secondary structure. Bioinformatics 19: 299–300. doi: 10.1093/bioinformatics/19.2.299
[9]
Lorenz RaB, SH and H?ner zu Siederdissen C, Tafer H, Flamm C, et al. (2011) ViennaRNA Package 2.0. Algorithms for Molecular Biology 6: 26. doi: 10.1186/1748-7188-6-26
[10]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121
[11]
Fujiyuki T, Takeuchi H, Ono M, Ohka S, Sasaki T, et al. (2004) Novel insect picorna-like virus identified in the brains of aggressive worker honeybees. J Virol 78: 1093–1100. doi: 10.1128/jvi.78.3.1093-1100.2004
[12]
Lanzi G, de MirandaJR, Boniotti MB, Cameron CE, Lavazza A, et al. (2006) Molecular and biological characterization of deformed wing virus of honeybees (Apis mellifera L.). J Virol 80: 4998–5009. doi: 10.1128/jvi.80.10.4998-5009.2006
[13]
Ongus JR, Peters D, Bonmatin JM, Bengsch E, Vlak JM, et al. (2004) Complete sequence of a picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J Gen Virol 85: 3747–3755. doi: 10.1099/vir.0.80470-0
[14]
Breitburd F, Kirnbauer R, Hubbert NL, Nonnenmacher B, Trin-Dinh-Desmarquet C, et al. (1995) Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol 69: 3959–3963.
[15]
Gorbalenya AE, Koonin EV, Wolf YI (1990) A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262: 145–148. doi: 10.1016/0014-5793(90)80175-i
[16]
Ye S, Xia H, Dong C, Cheng Z, Xia X, et al. (2012) Identification and characterization of Iflavirus 3C-like protease processing activities. Virology 428: 136–145. doi: 10.1016/j.virol.2012.04.002
[17]
Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72 (Pt 9): 2197–2206. doi: 10.1099/0022-1317-72-9-2197
[18]
Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28: 375–430. doi: 10.3109/10409239309078440
[19]
Baker AC, Schroeder DC (2008) The use of RNA-dependent RNA polymerase for the taxonomic assignment of Picorna-like viruses (order Picornavirales) infecting Apis mellifera L. populations. Virol J 5: 10. doi: 10.1186/1743-422x-5-10
[20]
Zanotto PM, Gibbs MJ, Gould EA, Holmes EC (1996) A reevaluation of the higher taxonomy of viruses based on RNA polymerases. J Virol 70: 6083–6096.
[21]
Wang X, Zhang J, Lu J, Yi F, Liu C, et al. (2004) Sequence analysis and genomic organization of a new insect picorna-like virus, Ectropis obliqua picorna-like virus, isolated from Ectropis obliqua. J Gen Virol 85: 1145–1151. doi: 10.1099/vir.0.19638-0
[22]
Wu TY, Wu CY, Chen YJ, Chen CY, Wang CH (2007) The 5′ untranslated region of Perina nuda virus (PnV) possesses a strong internal translation activity in baculovirus-infected insect cells. FEBS Lett 581: 3120–3126. doi: 10.1016/j.febslet.2007.05.070
[23]
de MirandaJR, Genersch E (2010) Deformed wing virus. J Invertebr Pathol 103 Suppl 1S48–61. doi: 10.1016/j.jip.2009.06.012
[24]
Moore J, Jironkin A, Chandler D, Burroughs N, Evans DJ, et al. (2011) Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. J Gen Virol 92: 156–161. doi: 10.1099/vir.0.025965-0
[25]
Terio V, Martella V, Camero M, Decaro N, Testini G, et al. (2008) Detection of a honeybee iflavirus with intermediate characteristics between kakugo virus and deformed wing virus. New Microbiol 31: 439–444.
[26]
Bonning B (2010) Dicistroviridae. In: In S. Asgari J, K.N., editor. Insect Virology Caister: Norfolk: Academic Press.
[27]
Christian PD, Murray D, Powell R, Hopkinson J, Gibb NN, et al. (2005) Effective control of a field population of Helicoverpa armigera by using the small RNA virus Helicoverpa armigera stunt virus (Tetraviridae: Omegatetravirus). Journal of Economic Entomology 98: 1839–1847. doi: 10.1603/0022-0493-98.6.1839
[28]
de MirandaJR, Dainat B, Locke B, Cordoni G, Berthoud H, et al. (2010) Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.). J Gen Virol 91: 2524–2530. doi: 10.1099/vir.0.022434-0
[29]
Hunter WB, Katsar CS, Chaparro JX (2006) Molecular analysis of capsid protein of Homalodisca coagulata Virus-1, a new leafhopper-infecting virus from the glassy-winged sharpshooter, Homalodisca coagulata. J Insect Sci 6: 1–10. doi: 10.1673/2006_06_28.1
[30]
Lau SK, Woo PC, Lai KK, Huang Y, Yip CC, et al. (2011) Complete genome analysis of three novel picornaviruses from diverse bat species. J Virol 85: 8819–8828. doi: 10.1128/jvi.02364-10
[31]
Stanway G, Brown F, Christian P (2005) Family Picornaviridae. Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses: 757–778.
[32]
Lu J, Zhang J, Wang X, Jiang H, Liu C, et al. (2006) In vitro and in vivo identification of structural and sequence elements in the 5′ untranslated region of Ectropis obliqua picorna-like virus required for internal initiation. J Gen Virol 87: 3667–3677. doi: 10.1099/vir.0.82090-0
[33]
Berenyi O, Bakonyi T, Derakhshifar I, Koglberger H, Topolska G, et al. (2007) Phylogenetic analysis of deformed wing virus genotypes from diverse geographic origins indicates recent global distribution of the virus. Appl Environ Microbiol 73: 3605. doi: 10.1128/aem.00696-07
[34]
Fujiyuki T, Ohka S, Takeuchi H, Ono M, Nomoto A, Kubo T (2006) Prevalence and phylogeny of Kakugo virus, a novel insect picorna-like virus that infects the honeybee (Apis mellifera L.), under various colony conditions. J Virol 80: 115–128. doi: 10.1128/jvi.00754-06
[35]
Choe SE, Nguyen TT, Hyun BH, Noh JH, Lee HS, et al. (2012) Genetic and phylogenetic analysis of South Korean sacbrood virus isolates from infected honey bees (Apis cerana). Vet Microbiol 157: 32–40. doi: 10.1016/j.vetmic.2011.12.007
[36]
Ghosh RC, Ball BV, Willcocks MM, Carter MJ (1999) The nucleotide sequence of sacbrood virus of the honey bee: an insect picorna-like virus. J Gen Virol 80 (Pt 6): 1541–1549.
[37]
Millan-Leiva A, Jakubowska AK, Ferre J, Herrero S (2012) Genome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua. J Invertebr Pathol 109: 127–133. doi: 10.1016/j.jip.2011.10.009
[38]
Roberts LO, Groppelli E (2009) An atypical IRES within the 5′ UTR of a dicistrovirus genome. Virus Res 139: 157–165. doi: 10.1016/j.virusres.2008.07.017
[39]
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8: 275–282. doi: 10.1093/bioinformatics/8.3.275
[40]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739. doi: 10.1093/molbev/msr121