Objective Immune dysregulation during sepsis is poorly understood, however, lymphocyte apoptosis has been shown to correlate with poor outcomes in septic patients. The inflammasome, a molecular complex which includes caspase-1, is essential to the innate immune response to infection and also important in sepsis induced apoptosis. Our group has recently demonstrated that endotoxin-stimulated monocytes release microvesicles (MVs) containing caspase-1 that are capable of inducing apoptosis. We sought to determine if MVs containing caspase-1 are being released into the blood during human sepsis and induce apoptosis.. Design Single-center cohort study Measurements 50 critically ill patients were screened within 24 hours of admission to the intensive care unit and classified as either a septic or a critically ill control. Circulatory MVs were isolated and analyzed for the presence of caspase-1 and the ability to induce lymphocyte apoptosis. Patients remaining in the ICU for 48 hours had repeated measurement of caspase-1 activity on ICU day 3. Main Results Septic patients had higher microvesicular caspase-1 activity 0.05 (0.04, 0.07) AFU versus 0.0 AFU (0, 0.02) (p<0.001) on day 1 and this persisted on day 3, 0.12 (0.1, 0.2) versus 0.02 (0, 0.1) (p<0.001). MVs isolated from septic patients on day 1 were able to induce apoptosis in healthy donor lymphocytes compared with critically ill control patients (17.8±9.2% versus 4.3±2.6% apoptotic cells, p<0.001) and depletion of MVs greatly diminished this apoptotic signal. Inhibition of caspase-1 or the disruption of MV integrity abolished the ability to induce apoptosis. Conclusion These findings suggest that microvesicular caspase-1 is important in the host response to sepsis, at least in part, via its ability to induce lymphocyte apoptosis. The ability of microvesicles to induce apoptosis requires active caspase-1 and intact microvesicles.
References
[1]
Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, et al. (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29: 1303–1310. doi: 10.1097/00003246-200107000-00002
[2]
Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348: 1546–1554. doi: 10.1056/nejmoa022139
[3]
Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150. doi: 10.1056/nejmra021333
[4]
Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, et al. (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27: 1230–1251. doi: 10.1097/00003246-199907000-00002
[5]
Sarkar A, Hall MW, Exline M, Hart J, Knatz N, et al. (2006) Caspase-1 Regulates Escherichia coli Sepsis and Splenic B Cell Apoptosis Independently of Interleukin-1beta and Interleukin-18. Am J Respir Crit Care Med 174: 1003–1010. doi: 10.1164/rccm.200604-546oc
[6]
Hotchkiss RS, Tinsley KW, Swanson PE, Chang KC, Cobb JP, et al. (1999) Prevention of lymphocyte cell death in sepsis improves survival in mice. Proc Natl Acad Sci U S A 96: 14541–14546. doi: 10.1073/pnas.96.25.14541
[7]
Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, et al. (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256: 97–100. doi: 10.1126/science.1373520
[8]
Howard AD, Kostura MJ, Thornberry N, Ding GJ, Limjuco G, et al. (1991) IL-1-converting enzyme requires aspartic acid residues for processing of the IL-1 beta precursor at two distinct sites and does not cleave 31-kDa IL-1 alpha. J Immunol 147: 2964–2969.
[9]
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, et al. (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356: 768–774. doi: 10.1038/356768a0
[10]
Scott AM, Saleh M (2006) The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ doi: 10.1038/sj.cdd.4402026
Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641–652. doi: 10.1016/0092-8674(93)90485-9
[13]
Hotchkiss RS, Chang KC, Swanson PE, Tinsley KW, Hui JJ, et al. (2000) Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat Immunol 1: 496–501.
[14]
Boudreau N, Sympson CJ, Werb Z, Bissell MJ (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science (New York, N Y) 267: 891–893. doi: 10.1126/science.7531366
[15]
Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis. Molecular microbiology 38: 31–40. doi: 10.1046/j.1365-2958.2000.02103.x
[16]
Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10: 417–426. doi: 10.1016/s1097-2765(02)00599-3
[17]
Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annual review of immunology 27: 229–265. doi: 10.1146/annurev.immunol.021908.132715
[18]
Martinon F, Tschopp J (2006) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Differ doi: 10.1038/sj.cdd.4402038
[19]
Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nature reviews Immunology 7: 31–40. doi: 10.1038/nri1997
[20]
Shaw MH, Reimer T, Kim Y-G, Nunez G (2008) NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Current opinion in immunology 20: 377–382. doi: 10.1016/j.coi.2008.06.001
[21]
Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4: 95–104. doi: 10.1038/nrm1019
[22]
Taniguchi S, Sagara J (2007) Regulatory molecules involved in inflammasome formation with special reference to a key mediator protein, ASC. Seminars in immunopathology 29: 231–238. doi: 10.1007/s00281-007-0082-3
[23]
Elliott JM, Rouge L, Wiesmann C, Scheer JM (2009) Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. The Journal of biological chemistry 284: 6546–6553. doi: 10.1074/jbc.m806121200
[24]
Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proceedings of the National Academy of Sciences of the United States of America 96: 10964–10967. doi: 10.1073/pnas.96.20.10964
[25]
Yamin TT, Ayala JM, Miller DK (1996) Activation of the native 45-kDa precursor form of interleukin-1-converting enzyme. The Journal of biological chemistry 271: 13273–13282. doi: 10.1074/jbc.271.22.13273
[26]
Fink SL, Bergsbaken T, Cookson BT (2008) Anthrax lethal toxin and Salmonella elicit the common cell death pathway of caspase-1-dependent pyroptosis via distinct mechanisms. Proc Natl Acad Sci U S A 105: 4312–4317. doi: 10.1073/pnas.0707370105
[27]
Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends in microbiology 9: 113–114. doi: 10.1016/s0966-842x(00)01936-3
[28]
Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cellular microbiology 8: 1812–1825. doi: 10.1111/j.1462-5822.2006.00751.x
[29]
Joshi VD, Kalvakolanu DV, Hebel JR, Hasday JD, Cross AS (2002) Role of caspase 1 in murine antibacterial host defenses and lethal endotoxemia. Infection and immunity 70: 6896–6903. doi: 10.1128/iai.70.12.6896-6903.2002
[30]
Monick MM, Hunninghake GW (2003) Second messenger pathways in pulmonary host defense. Annual review of physiology 65: 643–667.
[31]
Sarkar A, Mitra S, Mehta S, Raices R, Wewers MD (2009) Monocyte derived microvesicles deliver a cell death message via encapsulated caspase-1. PloS one 4: e7140. doi: 10.1371/journal.pone.0007140
[32]
Zong WX, Ditsworth D, Bauer DE, Wang ZQ, Thompson CB (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev 18: 1272–1282. doi: 10.1101/gad.1199904
[33]
Fahy RJ, Doseff AI, Wewers MD (1999) Spontaneous human monocyte apoptosis utilizes a caspase-3-dependent pathway that is blocked by endotoxin and is independent of caspase-1. J Immunol 163: 1755–1762.
[34]
Kim H-J, Hart J, Knatz N, Hall MW, Wewers MD (2004) Janus kinase 3 down-regulates lipopolysaccharide-induced IL-1 beta-converting enzyme activation by autocrine IL-10. Journal of immunology (Baltimore, Md: 1950) 172: 4948–4955. doi: 10.4049/jimmunol.172.8.4948
[35]
Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, et al. (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31: 1250–1256. doi: 10.1097/01.ccm.0000050454.01978.3b
[36]
Fahy RJ, Exline MC, Gavrilin MA, Bhatt NY, Besecker BY, et al. (2008) Inflammasome mRNA expression in human monocytes during early septic shock. Am J Respir Crit Care Med 177: 983–988. doi: 10.1164/rccm.200703-418oc
[37]
Distler JHW, Huber LC, Gay S, Distler O, Pisetsky DS (2006) Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity 39: 683–690. doi: 10.1080/08916930601061538
[38]
Huber LC, Jungel A, Distler JHW, Moritz F, Gay RE, et al. (2007) The role of membrane lipids in the induction of macrophage apoptosis by microparticles. Apoptosis: an international journal on programmed cell death 12: 363–374. doi: 10.1007/s10495-006-0622-7
[39]
Hugel B, Martinez MC, Kunzelmann C, Freyssinet J-M (2005) Membrane microparticles: two sides of the coin. Physiology (Bethesda, Md) 20: 22–27. doi: 10.1152/physiol.00029.2004
[40]
MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, et al. (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15: 825–835. doi: 10.1016/s1074-7613(01)00229-1
[41]
McKechnie NM, King BCR, Fletcher E, Braun G (2006) Fas-ligand is stored in secretory lysosomes of ocular barrier epithelia and released with microvesicles. Experimental eye research 83: 304–314. doi: 10.1016/j.exer.2005.11.028
[42]
Qu Y, Franchi L, Nunez G, Dubyak GR (2007) Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. Journal of immunology (Baltimore, Md: 1950) 179: 1913–1925. doi: 10.4049/jimmunol.179.3.1913
[43]
Wewers MD (2004) IL-1beta: an endosomal exit. Proceedings of the National Academy of Sciences of the United States of America 101: 10241–10242. doi: 10.1073/pnas.0403971101
[44]
Vaki I, Kranidioti H, Karagianni V, Spyridaki A, Kotsaki A, et al. An early circulating factor in severe sepsis modulates apoptosis of monocytes and lymphocytes. J Leukoc Biol 89: 343–349. doi: 10.1189/jlb.0410232
[45]
Brabant D, Michael P, Bleiblo F, Saleh M, Narain R, et al. (2011) Septic sera induces apoptosis and DNA fragmentation factor 40 activation in fibroblasts. Biochemical and biophysical research communications 412: 260–265. doi: 10.1016/j.bbrc.2011.07.080
[46]
Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, et al. (1998) Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. The Journal of clinical investigation 101: 890–898. doi: 10.1172/jci1112
[47]
Fantuzzi G, Zheng H, Faggioni R, Benigni F, Ghezzi P, et al. (1996) Effect of endotoxin in IL-1 beta-deficient mice. Journal of immunology (Baltimore, Md: 1950) 157: 291–296.
[48]
Hotchkiss RS, Swanson PE, Knudson CM, Chang KC, Cobb JP, et al. (1999) Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. Journal of immunology (Baltimore, Md: 1950) 162: 4148–4156.
[49]
Li P, Allen H, Banerjee S, Franklin S, Herzog L, et al. (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80: 401–411. doi: 10.1016/0092-8674(95)90490-5
[50]
Kumar A, Kumar A, Michael P, Brabant D, Parissenti AM, et al. (2005) Human serum from patients with septic shock activates transcription factors STAT1, IRF1, and NF-kappaB and induces apoptosis in human cardiac myocytes. J Biol Chem 280: 42619–42626. doi: 10.1074/jbc.m508416200
[51]
Martinez MC, Tesse A, Zobairi F, Andriantsitohaina R (2005) Shed membrane microparticles from circulating and vascular cells in regulating vascular function. American journal of physiology Heart and circulatory physiology 288: H1004–1009. doi: 10.1152/ajpheart.00842.2004
[52]
Vaki I, Kranidioti H, Karagianni V, Spyridaki A, Kotsaki A, et al. (2011) An early circulating factor in severe sepsis modulates apoptosis of monocytes and lymphocytes. J Leukoc Biol 89: 343–349. doi: 10.1189/jlb.0410232
[53]
Watanabe J, Marathe GK, Neilsen PO, Weyrich AS, Harrison KA, et al. (2003) Endotoxins stimulate neutrophil adhesion followed by synthesis and release of platelet-activating factor in microparticles. The Journal of biological chemistry 278: 33161–33168. doi: 10.1074/jbc.m305321200
[54]
Grobmyer SR, Armstrong RC, Nicholson SC, Gabay C, Arend WP, et al. (1999) Peptidomimetic fluoromethylketone rescues mice from lethal endotoxic shock. Mol Med 5: 585–594.
[55]
Li P, Allen H, Banerjee S, Seshadri T (1997) Characterization of mice deficient in interleukin-1 beta converting enzyme. J Cell Biochem 64: 27–32. doi: 10.1002/(sici)1097-4644(199701)64:1<27::aid-jcb5>3.0.co;2-1
[56]
Wang W, Faubel S, Ljubanovic D, Mitra A, Falk SA, et al. (2005) Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol 288: F997–1004. doi: 10.1152/ajprenal.00130.2004
[57]
Hotchkiss RS, Nicholson DW (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol 6: 813–822. doi: 10.1038/nri1943
[58]
Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653–660. doi: 10.1016/0092-8674(93)90486-a
[59]
Gagliardini V, Fernandez PA, Lee RK, Drexler HC, Rotello RJ, et al. (1994) Prevention of vertebrate neuronal death by the crmA gene. Science (New York, N Y) 263: 826–828. doi: 10.1126/science.8303301
[60]
van der Velden AWM, Velasquez M, Starnbach MN (2003) Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. Journal of immunology (Baltimore, Md: 1950) 171: 6742–6749. doi: 10.4049/jimmunol.171.12.6742
[61]
Riedemann NC, Guo RF, Ward PA (2003) The enigma of sepsis. J Clin Invest 112: 460–467. doi: 10.1172/jci19523