As an RNA virus, hepatitis C virus (HCV) is able to rapidly acquire drug resistance, and for this reason the design of effective anti-HCV drugs is a real challenge. The HCV subgenomic replicon-containing cells are widely used for experimental studies of the HCV genome replication mechanisms, for drug testing in vitro and in studies of HCV drug resistance. The NS3/4A protease is essential for virus replication and, therefore, it is one of the most attractive targets for developing specific antiviral agents against HCV. We have developed a stochastic model of subgenomic HCV replicon replication, in which the emergence and selection of drug resistant mutant viral RNAs in replicon cells is taken into account. Incorporation into the model of key NS3 protease mutations leading to resistance to BILN-2061 (A156T, D168V, R155Q), VX-950 (A156S, A156T, T54A) and SCH 503034 (A156T, A156S, T54A) inhibitors allows us to describe the long term dynamics of the viral RNA suppression for various inhibitor concentrations. We theoretically showed that the observable difference between the viral RNA kinetics for different inhibitor concentrations can be explained by differences in the replication rate and inhibitor sensitivity of the mutant RNAs. The pre-existing mutants of the NS3 protease contribute more significantly to appearance of new resistant mutants during treatment with inhibitors than wild-type replicon. The model can be used to interpret the results of anti-HCV drug testing on replicon systems, as well as to estimate the efficacy of potential drugs and predict optimal schemes of their usage.
References
[1]
O'Leary JG, Davis GL (2010) Hepatitis C virus replication and potential targets for direct-acting agents. Therap Adv Gastroenterol 3: 43–53. doi: 10.1177/1756283x09353353
[2]
de Bruijne J, van de Wetering de Rooij J, van Vliet AA, Zhou XJ, Temam MF, et al. (2012) First-in-human study of the pharmacokinetics and antiviral activity of IDX375, a novel nonnucleoside hepatitis C virus polymerase inhibitor. Antimicrob Agents Chemother 56: 4525–4528. doi: 10.1128/aac.00451-12
[3]
Hotho DM, de Bruijne J, O'Farrell AM, Boyea T, Li J, et al. (2012) Pharmacokinetics and antiviral activity of PHX1766, a novel HCV protease inhibitor, using an accelerated Phase I study design. Antivir Ther 17: 365–375. doi: 10.3851/imp1989
[4]
Lenz O, Vijgen L, Berke JM, Cummings MD, Fevery B, et al. (2013) Virologic response and characterisation of HCV genotype 2–6 in patients receiving TMC435 monotherapy (study TMC435-C202). J Hepatol 58: 445–451. doi: 10.1016/j.jhep.2012.10.028
[5]
Powdrill MH, Tchesnokov EP, Kozak RA, Russell RS, Martin R, et al. (2011) Contribution of a mutational bias in hepatitis C virus replication to the genetic barrier in the development of drug resistance. Proc Natl Acad Sci USA 108: 20509–20513. doi: 10.1073/pnas.1105797108
[6]
Lohmann V, Korner F, Koch J, Herian U, Theilmann L, et al. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285: 110–113. doi: 10.1126/science.285.5424.110
[7]
Bartenschlager R, Kaul A, Sparacio S (2003) Replication of the hepatitis C virus in cell culture. Antiviral Res 60: 91–102. doi: 10.1016/j.antiviral.2003.08.016
[8]
Robinson M, Tian Y, Delaney WE4th, Greenstein AE (2011) Preexisting drug-resistance mutations reveal unique barriers to resistance for distinct antivirals. Proc Natl Acad Sci USA 108: 10290–10295. doi: 10.1073/pnas.1101515108
[9]
Fridell RA, Qiu D, Valera L, Wang C, Rose RE, et al. (2011) Distinct functions of NS5A in hepatitis C virus RNA replication uncovered by studies with the NS5A inhibitor BMS-790052. J Virol 85: 7312–7320. doi: 10.1128/jvi.00253-11
[10]
Lemm JA, O'Boyle D 2nd, Liu M, Nower PT, Colonno R, et al. (2010) Identification of hepatitis C virus NS5A inhibitors. J Virol 84: 482–491. doi: 10.1128/jvi.01360-09
[11]
He Y, King MS, Kempf DJ, Lu L, Lim HB, et al. (2008) Relative replication capacity and selective advantage profiles of protease inhibitor-resistant hepatitis C virus (HCV) NS3 protease mutants in the HCV genotype 1b replicon system. Antimicrob Agents Chemother. 52: 1101–1110. doi: 10.1128/aac.01149-07
[12]
Verbinnen T, Van Marck H, Vandenbroucke I, Vijgen L, Claes M, et al. (2010) Tracking the evolution of multiple in vitro hepatitis C virus replicon variants under protease inhibitor selection pressure by 454 deep sequencing. J Virol 84: 11124–11133. doi: 10.1128/jvi.01217-10
[13]
Verbinnen T, Jacobs T, Vijgen L, Ceulemans H, Neyts J, et al. (2012) Replication capacity of minority variants in viral populations can affect the assessment of resistance in HCV chimeric replicon phenotyping assays. J Antimicrob Chemother 67: 2327–2337. doi: 10.1093/jac/dks234
[14]
Mathy JE, Ma S, Compton T, Lin K (2008) Combinations of cyclophilin inhibitor NIM811 with hepatitis C Virus NS3-4A Protease or NS5B polymerase inhibitors enhance antiviral activity and suppress the emergence of resistance. Antimicrob Agents Chemother 52: 3267–3275. doi: 10.1128/aac.00498-08
[15]
Lam AM, Espiritu C, Murakami E, Zennou V, Bansal S, et al. (2011) Inhibition of hepatitis C virus replicon RNA synthesis by PSI-352938, a cyclic phosphate prodrug of β-D-2′-deoxy-2′-α-fluoro-2′-β-C-methylgu?anosine. Antimicrob Agents Chemother 55: 2566–2575. doi: 10.1128/aac.00032-11
[16]
Ali S, Leveque V, Le Pogam S, Ma H, Philipp F, et al. (2008) Selected replicon variants with low-level in vitro resistance to the hepatitis C virus NS5B polymerase inhibitor PSI-6130 lack cross-resistance with R1479. Antimicrob Agents Chemother 52: 4356–4369. doi: 10.1128/aac.00444-08
[17]
Moradpour D, Penin F, Rice CM (2007) Replication of hepatitis C virus. Nat Rev Microbiol 5(6): 453–463. doi: 10.1038/nrmicro1645
[18]
Liu Z, Yang F, Robotham JM, Tang H (2009) Critical role of cyclophilin A and its prolyl-peptidylisomerase activity in the structure and function of the hepatitis C virus replication complex. J Virol 83: 6554–6565. doi: 10.1128/jvi.02550-08
[19]
Berger KL, Randall G (2009) Potential roles for cellular cofactors in hepatitis C virus replication complex formation. Commun Integr Biol 2: 471–473. doi: 10.4161/cib.2.6.9261
[20]
Lin K, Perni RB, Kwong AD, Lin C (2006) VX-950, a novel hepatitis C virus (HCV) NS3-4A protease inhibitor, exhibits potent antiviral activities in HCV replicon cells. Antimicrob Agents Chemother. 50: 1813–1822. doi: 10.1128/aac.50.5.1813-1822.2006
[21]
Matthews SJ, Lancaster JW (2012) Telaprevir: a hepatitis C NS3/4A protease inhibitor. Clin Ther 34: 1857–1882. doi: 10.1016/j.clinthera.2012.07.011
[22]
Malcolm BA, Liu R, Lahser F, Agrawal S, Belanger B, et al. (2006) SCH 503034, a mechanism-based inhibitor of hepatitis C virus NS3 protease, suppresses polyprotein maturation and enhances the antiviral activity of alpha interferon in replicon cells. Antimicrob Agents Chemother 50: 1013–1020. doi: 10.1128/aac.50.3.1013-1020.2006
[23]
Manns MP, Markova AA, Calle Serrano B, Cornberg M (2012) Phase III results of Boceprevir in treatment na?ve patients with chronic hepatitis C genotype 1. Liver Int 32 Suppl 127–31. doi: 10.1111/j.1478-3231.2011.02725.x
[24]
Habersetzer F, Leboeuf C, Doffo?l M, Baumert TF (2012) Boceprevir and personalized medicine in hepatitis C virus infection. Pharmgenomics Pers Med 5: 125–137.
[25]
Tong X, Arasappan A, Bennett F, Chase R, Feld B, et al. (2010) Preclinical characterization of the antiviral activity of SCH 900518 (narlaprevir), a novel mechanism-based inhibitor of hepatitis C virus NS3 protease. Antimicrob Agents Chemother 54: 2365–2370. doi: 10.1128/aac.00135-10
[26]
Hotho DM, de Bruijne J, Spaan M, Treitel MA, Boonstra A, et al. (2013) Sustained virologic response after therapy with the HCV protease inhibitor narlaprevir in combination with peginterferon and ribavirin is durable through long-term follow-up. J Viral Hepat 20: e78–81. doi: 10.1111/jvh.12012
[27]
Herrmann E, Zeuzem S, Sarrazin C, Hinrichsen H, Benhamou Y, et al. (2006) Viral kinetics in patients with chronic hepatitis C treated with the serine protease inhibitor BILN 2061. Antivir Ther 11: 371–376. doi: 10.1016/s0168-8278(04)90067-0
[28]
Reiser M, Hinrichsen H, Benhamou Y, Reesink HW, Wedemeyer H, et al. (2005) Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. Hepatology. 41: 832–835. doi: 10.1002/hep.20612
[29]
Seiwert SD, Andrews SW, Jiang Y, Serebryany V, Tan H, et al. (2008) Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227). Antimicrob Agents Chemother 52: 4432–4441. doi: 10.1128/aac.00699-08
[30]
Lim SR, Qin X, Susser S, Nicholas JB, Lange C, et al. (2012) Virologic escape during danoprevir (ITMN-191/RG7227) monotherapy is hepatitis C virus subtype dependent and associated with R155K substitution. Antimicrob Agents Chemother 56: 271–279. doi: 10.1128/aac.05636-11
[31]
Forestier N, Larrey D, Guyader D, Marcellin P, Rouzier R, et al. (2011) Treatment of chronic hepatitis C patients with the NS3/4A protease inhibitor danoprevir (ITMN-191/RG7227) leads to robust reductions in viral RNA: a phase 1b multiple ascending dose study. J Hepatol 54: 1130–1136. doi: 10.1016/j.jhep.2010.11.001
[32]
Halfon P, Locarnini S (2011) Hepatitis C virus resistance to protease inhibitors. J Hepatol 55: 192–206. doi: 10.1016/j.jhep.2011.01.011
[33]
Foy E, Li K, Sumpter R Jr, Loo YM, Johnson CL, et al. (2005) Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc Natl Acad Sci USA 102: 2986–2991. doi: 10.1073/pnas.0408707102
[34]
Lu L, Pilot-Matias TJ, Stewart KD, Randolph JT, Pithawalla R, et al. (2004) Mutations conferring resistance to a potent hepatitis C virus serine protease inhibitor in vitro. Antimicrob Agents Chemother 48: 2260–2266. doi: 10.1128/aac.48.6.2260-2266.2004
[35]
Lin C, Lin K, Luong YP, Rao BG, Wei YY, et al. (2004) In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J Biol Chem 279: 17508–17514. doi: 10.1074/jbc.m313020200
[36]
Lin C, Gates CA, Rao BG, Brennan DL, Fulghum JR, et al. (2005) In vitro studies of cross-resistance mutations against two hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061. J Biol Chem 280: 36784–36791. doi: 10.1074/jbc.m506462200
[37]
Berenguer M, Lorez-Labrador FX (2011) Boceprevir in the treatment of chronic hepatitius C virus infection. Virus Adaptation and Treatment 3: 7–17. doi: 10.2147/vaat.s9677
[38]
Tong X, Chase R, Skelton A, Chen T, Wright-Minogue J, et al. (2006) Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antiviral Res 70: 28–38. doi: 10.1016/j.antiviral.2005.12.003
[39]
Tong X, Bogen S, Chase R, Girijavallabhan V, Guo Z, et al. (2008) Characterization of resistance mutations against HCV ketoamide protease inhibitors. Antiviral Res 77: 177–185. doi: 10.1016/j.antiviral.2007.11.010
[40]
Cubero M, Esteban JI, Otero T, Sauleda S, Bes M, et al. (2008) Naturally occurring NS3-protease-inhibitor resistant mutant A156T in the liver of an untreated chronic hepatitis C patient. Virology 370: 237–245. doi: 10.1016/j.virol.2007.10.006
[41]
Kuntzen T, Timm J, Berical A, Lennon N, Berlin AM, et al. (2008) Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-na?ve patients. Hepatology 48: 1769–1778. doi: 10.1002/hep.22549
[42]
Bartels DJ, Zhou Y, Zhang EZ, Marcial M, Byrn RA, et al. (2008) Natural prevalence of hepatitis C virus variants with decreased sensitivity to NS3.4A protease inhibitors in treatment-naive subjects. J Infect Dis 198: 800–807. doi: 10.1086/591141
[43]
Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, et al. (2005) Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 19: 111–122. doi: 10.1016/j.molcel.2005.05.014
[44]
Nag A, Robotham JM, Tang H (2012) Suppression of viral RNA binding and the assembly of infectious hepatitis C virus particles in vitro by cyclophilin inhibitors. J Virol 86: 12616–12624. doi: 10.1128/jvi.01351-12
[45]
Robida JM, Nelson HB, Liu Z, Tang H (2007) Characterization of hepatitis C virus subgenomic replicon resistance to cyclosporine in vitro. J Virol 81: 5829–5840. doi: 10.1128/jvi.02524-06
[46]
Yang F, Robotham JM, Grise H, Frausto S, Madan V, et al. (2010) A major determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus identified by a genetic approach. PLoS Pathog 6: e1001118. doi: 10.1371/journal.ppat.1001118
[47]
Guedj J, Dahari H, Rong L, Sansone ND, Nettles RE, et al. (2013) Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proc Natl Acad Sci USA 110: 3991–3996. doi: 10.1073/pnas.1203110110
[48]
Rong L, Guedj J, Dahari H, Coffield DJ, Levi M, et al. (2013) Analysis of hepatitis C virus decline during treatment with the protease inhibitor Danoprevir using a multiscale model. PLoS Comput Biology 9: e1002959. doi: 10.1371/journal.pcbi.1002959
[49]
Rong L, Ribeiro RM, Perelson AS (2012) Modeling quasispecies and drug resistance in hepatitis C patients treated with a protease inhibitor. Bull Math Biol 74: 1789–17817. doi: 10.1007/s11538-012-9736-y
[50]
Adiwijaya BS, Herrmann E, Hare B, Kieffer T, Lin C, et al. (2010) A multi-variant, viral dynamic model of genotype 1 HCV to assess the in vivo evolution of protease-inhibitor resistant variants. PLoS Comput Biol 6: e1000745. doi: 10.1371/journal.pcbi.1000745
[51]
Rong L, Dahari H, Ribeiro RM, Perelson AS (2010) Rapid emergence of protease inhibitor resistance in hepatitis C virus. Sci Transl Med 2: 30ra32. doi: 10.1126/scitranslmed.3000544
[52]
Dahari H, Ribeiro RM, Rice CM, Perelson AS (2007) Mathematical modeling of subgenomic hepatitis C viral replication in Huh-7 cells. J Virol 81: 750–760. doi: 10.1128/jvi.01304-06
[53]
Mishchenko EL, Bezmaternykh KD, Likhoshvai VA, Ratushny AV, Khlebodarova TM, et al. (2007) Mathematical model for suppression of subgenomic hepatitis C virus RNA replication in cell culture. J Bioinform Comput Biol 5: 593–609. doi: 10.1142/s0219720007002849
[54]
Binder M, Sulaimanov N, Clausznitzer D, Schulze M, Hüber CM, et al. (2013) Replication vesicles are load- and choke-points in the hepatitis C virus lifecycle. PLoS Pathog 9(8): e1003561. doi: 10.1371/journal.ppat.1003561
[55]
Nakabayashi J (2012) A compartmentalization model of hepatitis C virus replication: an appropriate distribution of HCV RNA for the effective replication. J Theor Biol 300: 110–117. doi: 10.1016/j.jtbi.2012.01.023
[56]
McLean AK, Luciani F, Tanaka MM (2010) Trade-offs in resource allocation in the intracellular life-cycle of hepatitis C virus. J Theor Biol 267: 565–572. doi: 10.1016/j.jtbi.2010.09.031
[57]
Appel N, Herian U, Bartenschlager R (2005) Efficient rescue of hepatitis C virus RNA replication by trans-complementation with nonstructural protein 5A. J Virol 79: 896–909. doi: 10.1128/jvi.79.2.896-909.2005
[58]
Tong X, Malcolm BA (2006) Trans-complementation of HCV replication by non-structural protein 5A.Virus Res. 115: 122–130. doi: 10.1016/j.virusres.2005.07.012
[59]
Flores MV, Strawbridge J, Ciaramella G, Corbau R (2009) HCV-NS3 inhibitors: determination of their kinetic parameters and mechanism. Biochim Biophys Acta 1794: 1441–1448. doi: 10.1016/j.bbapap.2009.06.004
[60]
Rajagopalan R, Misialek S, Stevens SK, Myszka DG, Brandhuber BJ, et al. (2009) Inhibition and binding kinetics of the hepatitis C virus NS3 proteaes inhibitor ITMN-191 reveals tight binding and slow dissociative behavior. Biochemistry 48: 2559–2568. doi: 10.1021/bi900038p
[61]
Quinkert D, Bartenschlager R, Lohmann V (2005) Quantitative analysis of the hepatitis C virus replication complex. J Virol 79: 13594–13605. doi: 10.1128/jvi.79.21.13594-13605.2005
[62]
Komorowski M, Costa MJ, Rand DA, Stumpf MP (2011) Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc Natl Acad Sci USA 108: 8645–8650. doi: 10.1073/pnas.1015814108
[63]
Gillespie DT (1976) General method for numerically simulating stochastic time evolution of coupled chemical reactions. J Comput Phys 22: 403–434. doi: 10.1016/0021-9991(76)90041-3
[64]
Pietschmann T, Lohmann V, Rutter G, Kurpanek K, Bartenschlager R (2001) Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. J Virol 75: 1252–1264. doi: 10.1128/jvi.75.3.1252-1264.2001
[65]
Li Y, Masaki T, Yamane D, McGivern DR, Lemon SM (2013) Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication. Proc Natl Acad Sci USA 110: 1881–1886. doi: 10.1073/pnas.1213515110
[66]
Lin C, Pragai BM, Grakoui A, Xu J, Rice CM (1994) Hepatitis C virus NS3 serine proteinase: trans-cleavage requirements and processing kinetics. J Virol 68: 8147–8157.
[67]
Kozlov K, Samsonov A (2011) DEEP-differential evolution entirely parallel method for gene regulatory networks. J Supercomput 57: 172–178. doi: 10.1007/s11227-010-0390-6
[68]
Kozlov K, Surkova S, Myasnikova E, Reinitz J, Samsonova M (2012) Modeling of gap gene expression in Drosophila Kruppel mutants. PLoS Comput Biol 8: e1002635. doi: 10.1371/journal.pcbi.1002635
[69]
W?lk B, Büchele B, Moradpour D, Rice CM (2008) A dynamic view of hepatitis C virus replication complexes. J Virol 82: 10519–10531. doi: 10.1128/jvi.00640-08
[70]
Jones DM, Patel AH, Targett-Adams P, McLauchlan J (2009) The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. J Virol 83: 2163–2177. doi: 10.1128/jvi.01885-08
[71]
Johnson CL, Owen DM, Gale M Jr (2007) Functional and therapeutic analysis of hepatitis C virus NS3.4A protease control of antiviral immune defense. J Biol Chem 282: 10792–10803. doi: 10.1074/jbc.m610361200
[72]
Liang Y, Ishida H, Lenz O, Lin TI, Nyanguile O, et al. (2008) Antiviral suppression vs restoration of RIG-I signaling by hepatitis C protease and polymerase inhibitors. Gastroenterology 135: 1710–1718. doi: 10.1053/j.gastro.2008.07.023
[73]
Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172. doi: 10.1038/nature04193
[74]
Foy E, Li K, Wang C, Sumpter R Jr, Ikeda M, et al. (2003) Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300: 1145–1148. doi: 10.1126/science.1082604
[75]
McCown MF, Rajyaguru S, Kular S, Cammack N (2009) NájeraI (2009) GT-1a or GT-1b subtype-specific resistance profiles for hepatitis C virus inhibitors telaprevir and HCV-796. Antimicrob Agents Chemother 53: 2129–2132. doi: 10.1128/aac.01598-08
[76]
Lu L, Mo H, Pilot-Matias TJ, Molla A (2007) Evolution of resistant M414T mutants among hepatitis C virus replicon cells treated with polymerase inhibitor A-782759. Antimicrob Agents Chemother 51: 1889–1896. doi: 10.1128/aac.01004-06
[77]
Svarovskaia ES, Martin R, McHutchison JG, Miller MD, Mo H (2012) Abundant drug-resistant NS3 mutants detected by deep sequencing in hepatitis C virus-infected patients undergoing NS3 protease inhibitor monotherapy. J Clin Microbiol 50: 3267–3274. doi: 10.1128/jcm.00838-12
[78]
Coelmont L, Kaptein S, Paeshuyse J, Vliegen I, Dumont JM, et al. (2009) Debio 025, a cyclophilin binding molecule, is highly efficient in clearing hepatitis C virus (HCV) replicon-containing cells when used alone or in combination with specifically targeted antiviral therapy for HCV (STAT-C) inhibitors. Antimicrob Agents Chemother 53: 967–976. doi: 10.1128/aac.00939-08
[79]
Soriano V, Perelson AS, Zoulim F (2008) Why are there different dynamics in the selection of drug resistance in HIV and hepatitis B and C viruses? J Antimicrob Chemother 62: 1–4. doi: 10.1093/jac/dkn175
[80]
Vermehren J, Sarrazin C (2012) The role of resistance in HCV treatment. Best Pract Res Clin Gastroenterol 26: 487–503. doi: 10.1016/j.bpg.2012.09.011
[81]
Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, et al. (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 104: 12884–12889. doi: 10.1073/pnas.0704894104
[82]
Upadhyay A, Dixit U, Manvar D, Chaturvedi N, Pandey VN (2013) Affinity capture and identification of host cell factors associated with hepatitis C virus (+) strand subgenomic RNA. Mol Cell Proteomics 12: 1539–1552. doi: 10.1074/mcp.m112.017020
[83]
Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, et al. (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6: e1000719. doi: 10.1371/journal.ppat.1000719
[84]
Dahari H, Sainz B Jr, Perelson AS, Uprichard SL (2009) Modeling subgenomic hepatitis C virus RNA kinetics during treatment with alpha interferon. J Virol 83: 6383–6390. doi: 10.1128/jvi.02612-08
[85]
Bauhofer O, Ruggieri A, Schmid B, Schirmacher P, Bartenschlager R (2012) Persistence of HCV in quiescent hepatic cells under conditions of an interferon-induced antiviral response. Gastroenterology 143: 429–438. doi: 10.1053/j.gastro.2012.04.018
[86]
Rand U, Rinas M, Schwerk J, N?hren G, Linnes M, et al. (2012) Multi-layered stochasticity and paracrine signal propagation shape the type-I interferon response. Mol Syst Biol 8: 584. doi: 10.1038/msb.2012.17
[87]
Hopkins S, Scorneaux B, Huang Z, Murray MG, Wring S, et al. (2010) SCY-635, a novel nonimmunosuppressive analog of cyclosporine that exhibits potent inhibition of hepatitis C virus RNA replication in vitro. Antimicrob Agents Chemother 54: 660–672. doi: 10.1128/aac.00660-09
[88]
Ma S, Boerner JE, TiongYip C, Weidmann B, Ryder NS, et al. (2006) NIM811, a cyclophilin inhibitor, exhibits potent in vitro activity against hepatitis C virus alone or in combination with alpha interferon. Antimicrob Agents Chemother 50: 2976–2982. doi: 10.1128/aac.00310-06
[89]
Flisiak R, Feinman SV, Jablkowski M, Horban A, Kryczka W, et al. (2009) The cyclophilin inhibitor Debio 025 combined with PEG IFNalpha2a significantly reduces viral load in treatment-na?ve hepatitis C patients. Hepatology 49: 1460–1468. doi: 10.1002/hep.22835