全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

DOI: 10.1371/journal.pone.0092422

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models.

References

[1]  Pedata F, Antonelli T, Lambertini L, Beani L, Pepeu G (1983) Effect of adenosine, adenosine triphosphate, adenosine deaminase, dipyridamole and aminophylline on acetylcholine release from electrically-stimulated brain slices. Neuropharmacology 22: 609–614. doi: 10.1016/0028-3908(83)90152-1
[2]  Jackisch R, Strittmatter H, Kasakov L, Hertting G (1984) Endogenous adenosine as a modulator of hippocampal acetylcholine release. Naunyn Schmiedebergs Arch Pharmacol 327: 319–325. doi: 10.1007/bf00506243
[3]  Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16: 187–239. doi: 10.1016/0301-0082(81)90014-9
[4]  Snyder SH (1985) Adenosine as a neuromodulator. Annu Rev Neurosci 8: 103–124. doi: 10.1146/annurev.ne.08.030185.000535
[5]  Boison D (2012) Adenosine dysfunction in epilepsy. Glia 60: 1234–1243. doi: 10.1002/glia.22285
[6]  Wardas J (2002) Neuroprotective role of adenosine in the CNS. Pol J Pharmacol 54: 313–326.
[7]  Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M (2006) Targeting adenosine A2A receptors in Parkinson's disease. Trends Neurosci 29: 647–654. doi: 10.1016/j.tins.2006.09.004
[8]  Boison D, Singer P, Shen HY, Feldon J, Yee BK (2012) Adenosine hypothesis of schizophrenia—opportunities for pharmacotherapy. Neuropharmacology 62: 1527–1543. doi: 10.1016/j.neuropharm.2011.01.048
[9]  Hohoff C, Mullings EL, Heatherley SV, Freitag CM, Neumann LC, et al. (2010) Adenosine A(2A) receptor gene: evidence for association of risk variants with panic disorder and anxious personality. J Psychiatr Res 44: 930–937. doi: 10.1016/j.jpsychires.2010.02.006
[10]  Ferre S, Diamond I, Goldberg SR, Yao L, Hourani SM, et al. (2007) Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog Neurobiol 83: 332–347. doi: 10.1016/j.pneurobio.2007.04.002
[11]  Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15: 123–135. doi: 10.1016/j.smrv.2010.06.005
[12]  Wei CJ, Singer P, Coelho J, Boison D, Feldon J, et al. (2011) Selective inactivation of adenosine A(2A) receptors in striatal neurons enhances working memory and reversal learning. Learn Mem 18: 459–474. doi: 10.1101/lm.2136011
[13]  Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev Neurobiol 63: 191–270. doi: 10.1016/s0074-7742(05)63007-3
[14]  Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51: 83–133.
[15]  Dale N, Frenguelli BG (2009) Release of adenosine and ATP during ischemia and epilepsy. Curr Neuropharmacol 7: 160–179. doi: 10.2174/157015909789152146
[16]  Zetterstrom T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, et al. (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29: 111–115. doi: 10.1016/0304-3940(82)90338-x
[17]  Berman RF, Fredholm BB, Aden U, O'Connor WT (2000) Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. Brain Res 872: 44–53. doi: 10.1016/s0006-8993(00)02441-0
[18]  Winn HR, Welsh JE, Rubio R, Berne RM (1980) Changes in brain adenosine during bicuculline-induced seizures in rats. Effects of hypoxia and altered systemic blood pressure. Circ Res 47: 568–577. doi: 10.1161/01.res.47.4.568
[19]  During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32: 618–624. doi: 10.1002/ana.410320504
[20]  Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808: 1380–1399. doi: 10.1016/j.bbamem.2010.12.001
[21]  Sebastiao AM, Ribeiro JA (2009) Adenosine receptors and the central nervous system. Handb Exp Pharmacol: 471–534.
[22]  Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, et al. (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8: 858–859. doi: 10.1038/nn1491
[23]  Lazarus M, Shen HY, Cherasse Y, Qu WM, Huang ZL, et al. (2011) Arousal effect of caffeine depends on adenosine A2A receptors in the shell of the nucleus accumbens. J Neurosci 31: 10067–10075. doi: 10.1523/jneurosci.6730-10.2011
[24]  Jin S, Fredholm BB (1997) Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Naunyn Schmiedebergs Arch Pharmacol 355: 48–56. doi: 10.1007/pl00004917
[25]  Allgaier C, Greber R, Hertting G (1991) Studies on the interaction between presynaptic alpha 2-adrenoceptors and adenosine A1 receptors located on noradrenergic nerve terminals. Naunyn Schmiedebergs Arch Pharmacol 344: 187–192. doi: 10.1007/bf00167217
[26]  Kirk IP, Richardson PJ (1995) Inhibition of striatal GABA release by the adenosine A2a receptor is not mediated by increases in cyclic AMP. J Neurochem 64: 2801–2809. doi: 10.1046/j.1471-4159.1995.64062801.x
[27]  Ferre S, von Euler G, Johansson B, Fredholm BB, Fuxe K (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci U S A 88: 7238–7241. doi: 10.1073/pnas.88.16.7238
[28]  Rodrigues RJ, Alfaro TM, Rebola N, Oliveira CR, Cunha RA (2005) Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J Neurochem 92: 433–441. doi: 10.1111/j.1471-4159.2004.02887.x
[29]  Paxinos G, Franklin KBJ (2001) The Mouse Brain in Stereotaxic Coordinates. San Diego: Academic Press.
[30]  Henderson RJ Jr, Griffin CA (1984) Electrochemical detection of adenosine and other purine metabolites during high-performance liquid chromatographic analysis. J Chromatography 298: 231–242. doi: 10.1016/s0021-9673(01)92718-9
[31]  Birbeck JA, Mathews TA (2012) Detection of adenosine and dopamine using HPLC with boron-doped diamond working electrode. Pittcon 2012. Orlando. pp. 70.
[32]  Gharib A, Sarda N, Chabannes B, Cronenberger L, Pacheco H (1982) The regional concentrations of S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, and adenosine in rat brain. J Neurochem 38: 810–815. doi: 10.1111/j.1471-4159.1982.tb08702.x
[33]  Inoue T, Kirchhoff JR (2000) Electrochemical detection of thiols with a coenzyme pyrroloquinoline quinone modified electrode. Anal Chem 72: 5755–5760. doi: 10.1021/ac000716c
[34]  Dale N (1998) Delayed production of adenosine underlies temporal modulation of swimming in frog embryo. J Physiol 511 ( Pt 1): 265–272. doi: 10.1111/j.1469-7793.1998.265bi.x
[35]  Howard M, Sen HA, Capoor S, Herfel R, Crooks PA, et al. (1998) Measurement of adenosine concentration in aqueous and vitreous. Invest Ophthalmol Vis Sci 39: 1942–1946.
[36]  Deluca M, Leonard NJ, Gates BJ, McElroy WD (1973) The Role of 1N-Ethenoadenosine Triphosphate and 1N-Ethenoadenosine Monophosphate in Firefly Luminescence. Proc Natl Acad Sci U S A 70: 1664–1666. doi: 10.1073/pnas.70.6.1664
[37]  Kloor D, Yao K, Delabar U, Osswald H (2000) Simple and sensitive binding assay for measurement of adenosine using reduced S-adenosylhomocysteine hydrolase. Clin Chem 46: 537–542.
[38]  Pajski ML, Venton BJ (2010) Adenosine Release Evoked by Short Electrical Stimulations in Striatal Brain Slices is Primarily Activity Dependent. ACS Chem Neurosci 1: 775–787. doi: 10.1021/cn100037d
[39]  Nguyen MD, Lee ST, Ross AE, Ryals M, Choudhry VI, et al. (2014) Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. PLoS One 9: e87165. doi: 10.1371/journal.pone.0087165
[40]  Birbeck JA, Mathews TA (2013) Simultaneous detection of monoamine and purine molecules using high-performance liquid chromatography with a boron-doped diamond electrode. Anal Chem 85: 7398–7404. doi: 10.1021/ac4013144
[41]  Sperlagh B, Vizi ES (2011) The role of extracellular adenosine in chemical neurotransmission in the hippocampus and Basal Ganglia: pharmacological and clinical aspects. Curr Top Med Chem 11: 1034–1046. doi: 10.2174/156802611795347564
[42]  Stone TW, Ceruti S, Abbracchio MP (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol: 535–587.
[43]  Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95: 229–274. doi: 10.1016/j.pneurobio.2011.08.006
[44]  Burnstock G (2012) Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future. Bioessays 34: 218–225. doi: 10.1002/bies.201100130
[45]  Borowiec A, Lechward K, Tkacz-Stachowska K, Skladanowski AC (2006) Adenosine as a metabolic regulator of tissue function: production of adenosine by cytoplasmic 5'-nucleotidases. Acta Biochim Pol 53: 269–278.
[46]  Boison D (2011) Modulators of nucleoside metabolism in the therapy of brain diseases. Curr Top Med Chem 11: 1068–1086. doi: 10.2174/156802611795347609
[47]  Dunwiddie TV, Diao L, Proctor WR (1997) Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci 17: 7673–7682.
[48]  Srivastava S, Kashiwaya Y, Chen X, Geiger JD, Pawlosky R, et al. (2012) Microwave irradiation decreases ATP, increases free [Mg(2)(+)], and alters in vivo intracellular reactions in rat brain. J Neurochem 123: 668–675. doi: 10.1111/jnc.12026
[49]  Quarta D, Borycz J, Solinas M, Patkar K, Hockemeyer J, et al. (2004) Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. J Neurochem 91: 873–880. doi: 10.1111/j.1471-4159.2004.02761.x
[50]  Salim H, Ferre S, Dalal A, Peterfreund RA, Fuxe K, et al. (2000) Activation of adenosine A1 and A2A receptors modulates dopamine D2 receptor-induced responses in stably transfected human neuroblastoma cells. J Neurochem 74: 432–439. doi: 10.1046/j.1471-4159.2000.0740432.x
[51]  Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8: 774–785. doi: 10.1038/nrm2249
[52]  Kovacs Z, Dobolyi A, Szikra T, Palkovits M, Juhasz G (1998) Uneven regional distribution of nucleotide metabolism in human brain. Neurobiology (Bp) 6: 315–321.
[53]  Kobayashi T, Yamada T, Okada Y (1998) The levels of adenosine and its metabolites in the guinea pig and rat brain during complete ischemia-in vivo study. Brain Res 787: 211–219. doi: 10.1016/s0006-8993(97)01481-9
[54]  Ceballos G, Tuttle JB, Rubio R (1994) Differential distribution of purine metabolizing enzymes between glia and neurons. J Neurochem 62: 1144–1153. doi: 10.1046/j.1471-4159.1994.62031144.x
[55]  Kaelin-Lang A, Lauterburg T, Burgunder JM (1999) Expression of adenosine A2a receptors gene in the olfactory bulb and spinal cord of rat and mouse. Neurosci Lett 261: 189–191. doi: 10.1016/s0304-3940(99)00022-1
[56]  Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445: 168–176.
[57]  Restivo L, Chaillan FA, Ammassari-Teule M, Roman FS, Marchetti E (2006) Strain differences in rewarded discrimination learning using the olfactory tubing maze. Behav Genet 36: 923–934. doi: 10.1007/s10519-006-9088-1
[58]  Lee AW, Emsley JG, Brown RE, Hagg T (2003) Marked differences in olfactory sensitivity and apparent speed of forebrain neuroblast migration in three inbred strains of mice. Neuroscience 118: 263–270. doi: 10.1016/s0306-4522(02)00950-8
[59]  Wojcik WJ, Neff NH (1983) Adenosine A1 receptors are associated with cerebellar granule cells. J Neurochem 41: 759–763. doi: 10.1111/j.1471-4159.1983.tb04805.x
[60]  Goodman RR, Kuhar MJ, Hester L, Snyder SH (1983) Adenosine receptors: autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220: 967–969. doi: 10.1126/science.6302841
[61]  Namba K, Suzuki T, Nakata H (2010) Immunogold electron microscopic evidence of in situ formation of homo- and heteromeric purinergic adenosine A1 and P2Y2 receptors in rat brain. BMC Res Notes 3: 323. doi: 10.1186/1756-0500-3-323
[62]  Sanchez-Perez A, Llansola M, Cauli O, Felipo V (2005) Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum 4: 162–170. doi: 10.1080/14734220510008003
[63]  Andreescu CE, Prestori F, Brandalise F, D'Errico A, De Jeu MT, et al. (2011) NR2A subunit of the N-methyl D-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning. Neuroscience 176: 274–283. doi: 10.1016/j.neuroscience.2010.12.024
[64]  Takehara K, Kawahara S, Munemoto Y, Kuriyama H, Mori H, et al. (2004) The N-methyl-D-aspartate (NMDA)-type glutamate receptor GluRepsilon2 is important for delay and trace eyeblink conditioning in mice. Neurosci Lett 364: 43–47. doi: 10.1016/j.neulet.2004.04.024
[65]  Bartrup JT, Stone TW (1990) Activation of NMDA receptor-coupled channels suppresses the inhibitory action of adenosine on hippocampal slices. Brain Res 530: 330–334. doi: 10.1016/0006-8993(90)91305-z
[66]  Bao S, Chen L, Thompson RF (1998) Classical eyeblink conditioning in two strains of mice: conditioned responses, sensitization, and spontaneous eyeblinks. Behav Neurosci 112: 714–718. doi: 10.1037/0735-7044.112.3.714
[67]  Chen G, Steinmetz JE (2000) Intra-cerebellar infusion of NMDA receptor antagonist AP5 disrupts classical eyeblink conditioning in rabbits. Brain Res 887: 144–156. doi: 10.1016/s0006-8993(00)03005-5
[68]  Harms HH, Wardeh G, Mulder AH (1979) Effect of adenosine on depolarization-induced release of various radiolabelled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18: 577–580. doi: 10.1016/0028-3908(79)90107-2
[69]  Myers S, Pugsley TA (1986) Decrease in rat striatal dopamine synthesis and metabolism in vivo by metabolically stable adenosine receptor agonists. Brain Res 375: 193–197. doi: 10.1016/0006-8993(86)90975-3
[70]  Wood PL, Kim HS, Boyar WC, Hutchison A (1989) Inhibition of nigrostriatal release of dopamine in the rat by adenosine receptor agonists: A1 receptor mediation. Neuropharmacology 28: 21–25. doi: 10.1016/0028-3908(89)90062-2
[71]  Ferre S, Herrera-Marschitz M, Grabowska-Anden M, Casas M, Ungerstedt U, et al. (1991) Postsynaptic dopamine/adenosine interaction: II. Postsynaptic dopamine agonism and adenosine antagonism of methylxanthines in short-term reserpinized mice. Eur J Pharmacol 192: 31–37. doi: 10.1016/0014-2999(91)90065-x
[72]  Ferre S, O'Connor WT, Snaprud P, Ungerstedt U, Fuxe K (1994) Antagonistic interaction between adenosine A2A receptors and dopamine D2 receptors in the ventral striopallidal system. Implications for the treatment of schizophrenia. Neuroscience 63: 765–773. doi: 10.1016/0306-4522(94)90521-5
[73]  Ferre S, Popoli P, Tinner-Staines B, Fuxe K (1996) Adenosine A1 receptor-dopamine D1 receptor interaction in the rat limbic system: modulation of dopamine D1 receptor antagonist binding sites. Neurosci Lett 208: 109–112. doi: 10.1016/0304-3940(96)12577-5
[74]  Fuxe K, Ferre S, Canals M, Torvinen M, Terasmaa A, et al. (2005) Adenosine A2A and dopamine D2 heteromeric receptor complexes and their function. J Mol Neurosci 26: 209–220. doi: 10.1385/jmn:26:2-3:209
[75]  Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23: S28–33. doi: 10.1016/s1471-1931(00)00023-9
[76]  Le Moine C, Svenningsson P, Fredholm BB, Bloch B (1997) Dopamine-adenosine interactions in the striatum and the globus pallidus: inhibition of striatopallidal neurons through either D2 or A2A receptors enhances D1 receptor-mediated effects on c-fos expression. J Neurosci 17: 8038–8048.
[77]  Ferre S, Popoli P, Gimenez-Llort L, Finnman UB, Martinez E, et al. (1994) Postsynaptic antagonistic interaction between adenosine A1 and dopamine D1 receptors. Neuroreport 6: 73–76. doi: 10.1097/00001756-199412300-00020
[78]  Salamone JD, Ishiwari K, Betz AJ, Farrar AM, Mingote SM, et al. (2008) Dopamine/adenosine interactions related to locomotion and tremor in animal models: possible relevance to parkinsonism. Parkinsonism Relat Disord 14 Suppl 2S130–134. doi: 10.1016/j.parkreldis.2008.04.017
[79]  Hickey P, Stacy M (2012) Adenosine A2A antagonists in Parkinson's disease: what's next? Curr Neurol Neurosci Rep 12: 376–385. doi: 10.1007/s11910-012-0279-2
[80]  Sonsalla PK, Wong LY, Harris SL, Richardson JR, Khobahy I, et al. (2012) Delayed caffeine treatment prevents nigral dopamine neuron loss in a progressive rat model of Parkinson's disease. Exp Neurol 234: 482–487. doi: 10.1016/j.expneurol.2012.01.022
[81]  Hamre K, Tharp R, Poon K, Xiong X, Smeyne RJ (1999) Differential strain susceptibility following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri?dine(MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus. Brain Res 828: 91–103. doi: 10.1016/s0006-8993(99)01273-1
[82]  Jiao Y, Lu L, Williams RW, Smeyne RJ (2012) Genetic dissection of strain dependent paraquat-induced neurodegeneration in the substantia nigra pars compacta. PLoS One 7: e29447. doi: 10.1371/journal.pone.0029447
[83]  Smeyne M, Boyd J, Raviie Shepherd K, Jiao Y, Pond BB, et al. (2007) GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci U S A 104: 1977–1982. doi: 10.1073/pnas.0610978104
[84]  Smeyne M, Goloubeva O, Smeyne RJ (2001) Strain–dependent susceptibility to MPTP and MPP+-induced Parkinsonism is determined by glia. Glia 74: 73–80. doi: 10.1002/glia.1042.abs
[85]  Jang H, Boltz D, McClaren J, Pani AK, Smeyne M, et al. (2012) Inflammatory effects of highly pathogenic H5N1 influenza virus infection in the CNS of mice. J Neurosci 32: 1545–1559. doi: 10.1523/jneurosci.5123-11.2012
[86]  Jenner P (2003) Oxidative stress in Parkinson's disease. Ann Neurol 53 Suppl 3S26–36 discussion S36–28. doi: 10.1002/ana.10483
[87]  Fuxe K, Marcellino D, Borroto-Escuela DO, Guescini M, Fernandez-Duenas V, et al. (2010) Adenosine-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16: e18–42. doi: 10.1111/j.1755-5949.2009.00126.x
[88]  Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, et al. (2009) Adenosine, adenosine A 2A antagonists, and Parkinson's disease. Parkinsonism Relat Disord 15: 406–413. doi: 10.1016/j.parkreldis.2008.12.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133