全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Visual Targets Aren’t Irreversibly Converted to Motor Coordinates: Eye-Centered Updating of Visuospatial Memory in Online Reach Control

DOI: 10.1371/journal.pone.0092455

Full-Text   Cite this paper   Add to My Lib

Abstract:

Counter to current and widely accepted hypotheses that sensorimotor transformations involve converting target locations in spatial memory from an eye-fixed reference frame into a more stable motor-based reference frame, we show that this is not strictly the case. Eye-centered representations continue to dominate reach control even during movement execution; the eye-centered target representation persists after conversion to a motor-based frame and is continuously updated as the eyes move during reach, and is used to modify the reach plan accordingly during online control. While reaches are known to be adjusted online when targets physically shift, our results are the first to show that similar adjustments occur in response to changes in representations of remembered target locations. Specifically, we find that shifts in gaze direction, which produce predictable changes in the internal (specifically eye-centered) representation of remembered target locations also produce mid-transport changes in reach kinematics. This indicates that representations of remembered reach targets (and visuospatial memory in general) continue to be updated relative to gaze even after reach onset. Thus, online motor control is influenced dynamically by both the external and internal updating mechanisms.

References

[1]  Goodale MA, Pelisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320: 748–750. doi: 10.1038/320748a0
[2]  Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285: 257–260. doi: 10.1126/science.285.5425.257
[3]  Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255: 90–92. doi: 10.1126/science.1553535
[4]  Henriques DY, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18: 1583–1594.
[5]  Jones SA, Henriques DY (2010) Memory for proprioceptive and multisensory targets is partially coded relative to gaze. Neuropsychologia 48: 3782–3792. doi: 10.1016/j.neuropsychologia.2010.10.001
[6]  Medendorp WP, Crawford JD (2002) Visuospatial updating of reaching targets in near and far space. Neuroreport 13: 633–636. doi: 10.1097/00001756-200204160-00019
[7]  Medendorp WP, Goltz HC, Crawford JD, Vilis T (2005) Integration of target and effector information in human posterior parietal cortex for the planning of action. J Neurophysiol 93: 954–962. doi: 10.1152/jn.00725.2004
[8]  Pouget A, Ducom JC, Torri J, Bavelier D (2002) Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83: B1–11. doi: 10.1016/s0010-0277(01)00163-9
[9]  McGovern NN, Cowburn AS, Porter L, Walmsley SR, Summers C, et al. (2011) Hypoxia selectively inhibits respiratory burst activity and killing of Staphylococcus aureus in human neutrophils. J Immunol 186: 453–463. doi: 10.4049/jimmunol.1002213
[10]  Van Pelt S, Medendorp WP (2007) Gaze-centered updating of remembered visual space during active whole-body translations. J Neurophysiol 97: 1209–1220. doi: 10.1152/jn.00882.2006
[11]  Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64: 476–482. doi: 10.1007/bf00340484
[12]  Sorrento GU, Henriques DYP (2008) Reference frame conversions for repeated arm movements. J Neurophysiol 99: 2968 – 2984.
[13]  Poljac E, van den Berg AV (2003) Representation of heading direction in far and near head space. Exp Brain Res 151: 501–513. doi: 10.1007/s00221-003-1498-1
[14]  Thompson AA, Henriques DY (2008) Updating visual memory across eye movements for ocular and arm motor control. J Neurophysiol 100: 2507–2514. doi: 10.1152/jn.90599.2008
[15]  Beurze SM, Van Pelt S, Medendorp WP (2006) Behavioral reference frames for planning human reaching movements. J Neurophysiol 96: 352–362. doi: 10.1152/jn.01362.2005
[16]  Batista AP, Santhanam G, Yu BM, Ryu SI, Afshar A, et al. (2007) Reference frames for reach planning in macaque dorsal premotor cortex. J Neurophysiol 98: 966–983. doi: 10.1152/jn.00421.2006
[17]  Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44: 2594–2606. doi: 10.1016/j.neuropsychologia.2005.10.011
[18]  Crawford JD, Henriques DY, Medendorp WP (2011) Three-dimensional transformations for goal-directed action. Annual Review of Neuroscience 34: 309–331. doi: 10.1146/annurev-neuro-061010-113749
[19]  Crawford JD, Medendorp WP, Marotta JJ (2004) Spatial transformations for eye-hand coordination. Jornal of Neurophysiology 92: 10–19. doi: 10.1152/jn.00117.2004
[20]  McGuire LM, Sabes PN (2009) Sensory transformations and the use of multiple reference frames for reach planning. Nat Neurosci 12: 1056–1061. doi: 10.1038/nn.2357
[21]  Byrne PA, Crawford JD (2010) Cue reliability and a landmark stability heuristic determine relative weighting between egocentric and allocentric visual information in memory-guided reach. J Neurophysiol 103: 3054–3069. doi: 10.1152/jn.01008.2009
[22]  Chen Y, Byrne P, Crawford JD (2011) Time course of allocentric decay, egocentric decay, and allocentric-to-egocentric conversion in memory-guided reach. Neuropsychologia 49: 49–60. doi: 10.1016/j.neuropsychologia.2010.10.031
[23]  Henriques DY, Medendorp WP, Khan AZ, Crawford JD (2002) Visuomotor transformations for eye-hand coordination. Prog Brain Res 140: 329–340. doi: 10.1016/s0079-6123(02)40060-x
[24]  Khan AZ, Crawford JD (2001) Ocular dominance reverses as a function of horizontal gaze angle. Vision Res 41: 1743–1748. doi: 10.1016/s0042-6989(01)00079-7
[25]  Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4: 2745–2754.
[26]  Izawa J, Shadmehr R (2008) On-line processing of uncertain information in visuomotor control. Journal of Neuroscience 28: 11360–11368. doi: 10.1523/jneurosci.3063-08.2008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133