全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Chaihuang-Yishen Granule Inhibits Diabetic Kidney Disease in Rats through Blocking TGF-β/Smad3 Signaling

DOI: 10.1371/journal.pone.0090807

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective Increasing evidence shows that TGF-β1 is a key mediator in diabetic nephropathy (DN) and induces renal fibrosis positively by Smad3 but negatively by Smad7. However, treatment of DN by blocking the TGF-β/Smad pathway remains limited. The present study investigated the anti-fibrotic effect of a traditional Chinese medicine, Chaihuang-Yishen granule (CHYS), on DN. Research Design and Methods Protective role of CHYS in DN was examined in an accelerated type 1 DN induced by streptozotocin in uninephrectomized Wistar rats. CHYS, at a dose of 0.56 g/kg body weight, was administered by a daily gastric gavage for 20 weeks and the therapeutic effect and potential mechanisms of CHYS on diabetic kidney injury were examined. Results Treatment with CHYS attenuated diabetic kidney injury by significantly inhibiting 24-h proteinuria and progressive renal fibrosis including glomerulosclerotic index, tubulointerstitial fibrosis index, and upregulation of extracellular matrix (collagen I, IV, and fibronectin), despite the same levels of blood glucose. Further studies revealed that inhibition of renal fibrosis in CHYS-treated diabetic rats was associated with inhibition of TGF-β1/Smad3 signaling as demonstrated by upregulation of Smad7 but downregulation of TGF-β1, TGF-β receptors, activation of Smad3, and expression of miRNA-21. Conclusions CHYS may be a therapeutic agent for DN. CHYS attenuates DN by blocking TGF-β/Smad3-mediated renal fibrosis.

References

[1]  International Diabetes Federation (2013) Complications of diabetes. Available: http://www.idf.org/complications-diabete?s. Accessed 2013 July 23.
[2]  Mason RM, Wahab NA (2003) Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 14: 1358–1373. doi: 10.1097/01.asn.0000065640.77499.d7
[3]  Tervaert TWC, Mooyaart AL, Amann K, Cohen AH, Cook HT, et al. (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21: 556–563. doi: 10.1681/asn.2010010010
[4]  Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, et al. (1984) Structural-functional relationships in diabetic nephropathy. J Clin Inves 74: 1143–1155. doi: 10.1172/jci111523
[5]  Reeves WB, Andreoli TE (2000) Transforming growth factor β contributes to progressive diabetic nephropathy. Proc Natl Aca Sci USA 97: 7667–7669. doi: 10.1073/pnas.97.14.7667
[6]  Wang W, Huang XR, Li AG, Liu F, Li JH, et al. (2005) Signaling mechanism of TGF-β1 in prevention of renal inflammation: role of Smad7. J Am Soc Nephrol 16: 1371–1383. doi: 10.1681/asn.2004121070
[7]  Huang C, Kim Y, Caramori MLA, Fish AJ, Rich SS, et al. (2002) Cellular basis of diabetic nephropathy II. The transforming growth factor-β system and diabetic nephropathy lesions in type 1 diabetes. Diabetes 51: 3577–3581. doi: 10.2337/diabetes.51.12.3577
[8]  Belghith M, Bluestone JA, Barriot S, Mégret J, Bach JF, et al. (2003) TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9: 1202–1208. doi: 10.1038/nm924
[9]  Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425: 577–584. doi: 10.1038/nature02006
[10]  Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, et al. (1997) The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89: 1165–1173. doi: 10.1016/s0092-8674(00)80303-7
[11]  Chen HY, Huang XR, Wang W, Li JH, Heuchel RL, et al. (2011) The protective role of Smad7 in diabetic kidney disease: mechanism and therapeutic potential. Diabetes 60: 590–601. doi: 10.2337/db10-0403
[12]  Verrecchia F, Vindevoghel L, Lechleider RJ, Uitto J, Roberts AB, et al. (2001) Smad3/AP-1 interactions control transcriptional responses to TGF-β in a promoter-specific manner. Oncogene 20: 3332–3340. doi: 10.1038/sj.onc.1204448
[13]  Vindevoghel L, Lechleider RJ, Kon A, De Caestecker MP, Uitto J, et al. (1998) SMAD3/4-dependent transcriptional activation of the human type VII collagen gene (COL7A1) promoter by transforming growth factor β. Proc Natl Aca Sci USA 95: 14769–14774. doi: 10.1073/pnas.95.25.14769
[14]  Chen S-J, Yuan W, Mori Y, Levenson A, Trojanowska M, et al. (1999) Stimulation of type I collagen transcription in human skin fibroblasts by TGF-β: involvement of Smad 3. J Invest Dermatol 112: 49–57. doi: 10.1046/j.1523-1747.1999.00477.x
[15]  Wang W, Koka V, Lan HY (2005) Transforming growth factor-β and Smad signalling in kidney diseases. Nephrology 10: 48–56. doi: 10.1111/j.1440-1797.2005.00334.x
[16]  Zhong X, Chung AC, Chen HY, Meng XM, Lan HY (2011) Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol 22: 1668–1681. doi: 10.1681/asn.2010111168
[17]  Zarjou A, Yang S, Abraham E, Agarwal A, Liu G (2011) Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol-Renal 301: F793–F801. doi: 10.1152/ajprenal.00273.2011
[18]  Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, et al. (2013) miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56: 663–674. doi: 10.1007/s00125-012-2804-x
[19]  Wen X, Zeng Y, Liu L, Zhang H, Xu W, et al. (2012) Zhenqing recipe alleviates diabetic nephropathy in experimental type 2 diabetic rats through suppression of SREBP-1c. J Ethnopharmacol 142: 144–150. doi: 10.1016/j.jep.2012.04.028
[20]  Critchley JA, Zhao HL, Tomlinson B, Leung W, Thomas GN, et al. (2002) Management of nephropathy in patients with type 2 diabetes. Chin Med J (Engl) 115: 129–135.
[21]  Zhang H, Li P, Burczynski FJ, Gong Y, Choy P, et al.. (2011) Attenuation of diabetic nephropathy in Otsuka Long-Evans Tokushima Fatty (OLETF) rats with a combination of Chinese herbs (Tangshen Formula). Evid Based Complement Alte rnat Med doi: 10.1155/2011/613737.
[22]  Li P, Yan J, Sun Y, Burczynski FJ, Gong Y (2007) Chinese herbal formula Qilong- Lishui granule improves puromycin aminonucleoside-induced renal injury through regulation of bone morphogenetic proteins. Nephrology 12: 466–473. doi: 10.1111/j.1440-1797.2007.00828.x
[23]  Zhao T, Zhang H, Zhao T, Zhang X, Lu J, et al.. (2012) Intrarenal metabolomics reveals the association of local organic toxins with the progression of diabetic kidney disease. J Pharm Biomed Anal doi: 10.1016/j.jpba.2011.11.010.
[24]  Meng XM, Huang XR, Xiao J, Chen H, Zhong X, et al. (2012) Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro. J Pathol 227: 175–188. doi: 10.1002/path.3976
[25]  Lan HY, Mu W, Nikolic-Paterson DJ, Atkins RC (1995) A novel, simple, reliable, and sensitive method for multiple immunoenzyme staining: use of microwave oven heating to block antibody crossreactivity and retrieve antigens. J Histochem Cytochem 43: 97–102. doi: 10.1177/43.1.7822770
[26]  Huang XR, Chung AC, Zhou L, Wang XJ, Lan HY (2008) Latent TGF-β1 protects against crescentic glomerulonephritis. J Am Soc Nephrol 19: 233–242. doi: 10.1681/asn.2007040484
[27]  Hou CC, Wang W, Huang XR, Fu P, Chen TH, et al. (2005) Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-β signaling and fibrosis in rat remnant kidney. Am J Pathol 166: 761–771. doi: 10.1016/s0002-9440(10)62297-3
[28]  Lan HY (2011) Diverse roles of TGF-β/Smads in renal fibrosis and inflammation. Int J Biol Sci 7: 1056–1067. doi: 10.7150/ijbs.7.1056
[29]  Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, et al. (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGFβ receptor for degradation. Mol Cell 6: 1365–1375. doi: 10.1016/s1097-2765(00)00134-9
[30]  Hong SW, Isono M, Chen S, Iglesias-De La Cruz MC, Han DC, et al. (2001) Increased glomerular and tubular expression of transforming growth factor-β1, its type II receptor, and activation of the Smad signaling pathway in the db/db mouse. Am J Pathol 158: 1653–1663. doi: 10.1016/s0002-9440(10)64121-1
[31]  Li JH, Huang XR, Zhu HJ, Oldfield M, Cooper M, et al. (2004) Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease. FASEB J 18: 176–178. doi: 10.1096/fj.02-1117fje
[32]  Fujimoto M, Maezawa Y, Yokote K, Joh K, Kobayashi K, et al. (2003) Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem Biophys Res Commun 305: 1002–1007. doi: 10.1016/s0006-291x(03)00885-4
[33]  Wang A, Ziyadeh FN, Lee EY, Pyagay PE, Sung SH, et al. (2007) Interference with TGF-β signaling by Smad3-knockout in mice limits diabetic glomerulosclerosis without affecting albuminuria. Am J Physiol Renal Physiol 293: F1657–F1665. doi: 10.1152/ajprenal.00274.2007
[34]  Wang W, Huang XR, Canlas E, Oka K, Truong LD, et al. (2006) Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ Res 98: 1032–1039. doi: 10.1161/01.res.0000218782.52610.dc
[35]  Yang F, Huang XR, Chung ACK, Hou C-C, Lai KN, et al. (2010) Essential role for Smad3 in angiotensin II-induced tubular epithelial-mesenchymal transition. J Pathol 221: 390–401. doi: 10.1002/path.2721
[36]  Kantharidis P, Wang B, Carew RM, Lan HY (2011) Diabetes complications: the microRNA perspective. Diabetes 60: 1832–1837. doi: 10.2337/db11-0082
[37]  Chung AC, Yu X, Lan HY (2013) MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renovasc Dis 6: 169–179.
[38]  Patel V, Noureddine L (2012) MicroRNAs and fibrosis. Curr Opin Nephrol Hypertens 21: 410–416. doi: 10.1097/mnh.0b013e328354e559

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133