[1] | Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2: 145–156. doi: 10.1016/s1474-4422(03)00321-1
|
[2] | Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55: 187–199. doi: 10.1016/j.neuron.2007.06.026
|
[3] | Hoogendam JM, Ramakers GM, Di Lazzaro V (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3: 95–118. doi: 10.1016/j.brs.2009.10.005
|
[4] | Kobayashi M (2010) Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning. Restor Neurol Neurosci 28: 437–448.
|
[5] | Fregni F, Pascual-Leone A (2005) Transcranial magnetic stimulation for the treatment of depression in neurologic disorders. Curr Psychiatry Rep 7: 381–390. doi: 10.1007/s11920-005-0041-4
|
[6] | Patrizi F, Freedman SD, Pascual-Leone A, Fregni F (2006) Novel therapeutic approaches to the treatment of chronic abdominal visceral pain. ScientificWorldJournal 6: 472–490. doi: 10.1100/tsw.2006.98
|
[7] | Padberg F, George MS (2009) Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression. Exp Neurol 219: 2–13. doi: 10.1016/j.expneurol.2009.04.020
|
[8] | Rotenberg A, Bae EH, Takeoka M, Tormos JM, Schachter SC, et al. (2009) Repetitive transcranial magnetic stimulation in the treatment of epilepsia partialis continua. Epilepsy Behav 14: 253–257. doi: 10.1016/j.yebeh.2008.09.007
|
[9] | Rosen AC, Ramkumar M, Nguyen T, Hoeft F (2009) Noninvasive transcranial brain stimulation and pain. Curr Pain Headache Rep 13: 12–17. doi: 10.1007/s11916-009-0004-2
|
[10] | Rotenberg A (2010) Prospects for clinical applications of transcranial magnetic stimulation and real-time EEG in epilepsy. Brain Topogr 22: 257–266. doi: 10.1007/s10548-009-0116-3
|
[11] | Siegelbaum SA, Kandel ER (1991) Learning-related synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 1: 113–120. doi: 10.1016/0959-4388(91)90018-3
|
[12] | Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111: 800–805. doi: 10.1016/s1388-2457(99)00323-5
|
[13] | Rizzo V, Siebner HR, Modugno N, Pesenti A, Munchau A, et al. (2004) Shaping the excitability of human motor cortex with premotor rTMS. J Physiol 554: 483–495. doi: 10.1113/jphysiol.2003.048777
|
[14] | Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, et al. (2004) Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 115: 1519–1526. doi: 10.1016/j.clinph.2004.02.005
|
[15] | Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, et al. (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69: 86–94. doi: 10.1016/j.brainresbull.2005.11.003
|
[16] | Khedr EM, Rothwell JC, Ahmed MA, Shawky OA, Farouk M (2007) Modulation of motor cortical excitability following rapid-rate transcranial magnetic stimulation. Clin Neurophysiol 118: 140–145. doi: 10.1016/j.clinph.2006.09.006
|
[17] | Aydin-Abidin S, Trippe J, Funke K, Eysel UT, Benali A (2008) High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 188: 249–261. doi: 10.1007/s00221-008-1356-2
|
[18] | Pell GS, Roth Y, Zangen A (2011) Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 93: 59–98. doi: 10.1016/j.pneurobio.2010.10.003
|
[19] | Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, Navarro X, Lopez-Vales R, et al. (2010) Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clin Neurophysiol 121: 104–108. doi: 10.1016/j.clinph.2009.09.008
|
[20] | Vahabzadeh-Hagh AM, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A (2011) Measures of cortical inhibition by paired-pulse transcranial magnetic stimulation in anesthetized rats. J Neurophysiol 105: 615–624. doi: 10.1152/jn.00660.2010
|
[21] | Vahabzadeh-Hagh AM, Muller PA, Gersner R, Zangen A, Rotenberg A (2012) Translational neuromodulation: approximating human transcranial magnetic stimulation protocols in rats. Neuromodulation 15: 296–305. doi: 10.1111/j.1525-1403.2012.00482.x
|
[22] | Rotenberg A, Muller P, Birnbaum D, Harrington M, Riviello JJ, et al. (2008) Seizure suppression by EEG-guided repetitive transcranial magnetic stimulation in the rat. Clin Neurophysiol 119: 2697–2702. doi: 10.1016/j.clinph.2008.09.003
|
[23] | Muller PA, Pascual-Leone A, Rotenberg A (2012) Safety and tolerability of repetitive transcranial magnetic stimulation in patients with pathologic positive sensory phenomena: a review of literature. Brain Stimul 5: 320–329 e327.
|
[24] | Sun W, Mao W, Meng X, Wang D, Qiao L, et al. (2012) Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia 53: 1782–1789. doi: 10.1111/j.1528-1167.2012.03626.x
|
[25] | Loeb C, Patrone A, Besio G, Balestrino M, Mainardi P (1990) The excitatory amino acid antagonist amino-phosphono-valeric acid (APV) provides protection against penicillin-induced epileptic activity in the rat. Epilepsy Res 6: 249–251. doi: 10.1016/0920-1211(90)90080-f
|
[26] | Loeb C, Patrone A, Besio G, Balestrino M, Mainardi P (1993) The antiepileptic effect of low-dose amino-phosphono-valeric acid (APV) is not enhanced by phosphatidylserine association. Seizure 2: 309–310. doi: 10.1016/s1059-1311(05)80146-3
|
[27] | Kent S, Kernahan SD, Levine S (1996) Effects of excitatory amino acids on the hypothalamic-pituitary-adrenal axis of the neonatal rat. Brain Res Dev Brain Res 94: 1–13. doi: 10.1016/0165-3806(96)00023-5
|
[28] | Guerrini L, Molteni A, Wirth T, Kistler B, Blasi F (1997) Glutamate-dependent activation of NF-kappaB during mouse cerebellum development. J Neurosci 17: 6057–6063.
|
[29] | McGuire M, Liu C, Cao Y, Ling L (2008) Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats. J Appl Physiol (1985) 105: 942–950. doi: 10.1152/japplphysiol.01274.2006
|
[30] | Bouras R, Chapman CA (2003) Long-term synaptic depression in the adult entorhinal cortex in vivo. Hippocampus 13: 780–790. doi: 10.1002/hipo.10124
|
[31] | de Olmos S, Bender C, de Olmos JS, Lorenzo A (2009) Neurodegeneration and prolonged immediate early gene expression throughout cortical areas of the rat brain following acute administration of dizocilpine. Neuroscience 164: 1347–1359. doi: 10.1016/j.neuroscience.2009.09.022
|
[32] | Han RZ, Hu JJ, Weng YC, Li DF, Huang Y (2009) NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 25: 367–375. doi: 10.1007/s12264-009-0608-x
|
[33] | Lai MC, Lui CC, Yang SN, Wang JY, Huang LT (2009) Epileptogenesis is increased in rats with neonatal isolation and early-life seizure and ameliorated by MK-801: a long-term MRI and histological study. Pediatr Res 66: 441–447. doi: 10.1203/pdr.0b013e3181b337d2
|
[34] | Whishaw IQ, Cioe JD, Previsich N, Kolb B (1977) The variability of the interaural line vs the stability of bregma in rat stereotaxic surgery. Physiol Behav 19: 719–722. doi: 10.1016/0031-9384(77)90304-3
|
[35] | Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, et al. (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48: 1398–1403. doi: 10.1212/wnl.48.5.1398
|
[36] | Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111: 1002–1007. doi: 10.1016/s1388-2457(00)00284-4
|
[37] | Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, et al. (2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 31: 1193–1203. doi: 10.1523/jneurosci.1379-10.2011
|
[38] | Funke K, Benali A (2011) Modulation of cortical inhibition by rTMS - findings obtained from animal models. J Physiol 589: 4423–4435. doi: 10.1113/jphysiol.2011.206573
|
[39] | Wang F, Geng X, Tao HY, Cheng Y (2010) The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area. J Mol Neurosci 41: 145–155. doi: 10.1007/s12031-009-9311-7
|
[40] | Nakano M, Yamada S, Udagawa R, Kato N (2004) Frequency-dependent requirement for calcium store-operated mechanisms in induction of homosynaptic long-term depression at hippocampus CA1 synapses. Eur J Neurosci 19: 2881–2887. doi: 10.1111/j.0953-816x.2004.03390.x
|
[41] | Cincotta M, Borgheresi A, Gambetti C, Balestrieri F, Rossi L, et al. (2003) Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy. Clin Neurophysiol 114: 1827–1833. doi: 10.1016/s1388-2457(03)00181-0
|
[42] | Fitzgerald PB, Fountain S, Daskalakis ZJ (2006) A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117: 2584–2596. doi: 10.1016/j.clinph.2006.06.712
|
[43] | Brasil-Neto JP, de Araujo DP, Teixeira WA, Araujo VP, Boechat-Barros R (2004) Experimental therapy of epilepsy with transcranial magnetic stimulation: lack of additional benefit with prolonged treatment. Arq Neuropsiquiatr 62: 21–25. doi: 10.1590/s0004-282x2004000100004
|
[44] | Lee SL, Abraham M, Cacace AT, Silver SM (2008) Repetitive transcranial magnetic stimulation in veterans with debilitating tinnitus: a pilot study. Otolaryngol Head Neck Surg 138: 398–399. doi: 10.1016/j.otohns.2007.11.035
|
[45] | Dragasevic N, Potrebic A, Damjanovic A, Stefanova E, Kostic VS (2002) Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson's disease: an open study. Mov Disord 17: 528–532. doi: 10.1002/mds.10109
|
[46] | Sokhadze EM, El-Baz A, Baruth J, Mathai G, Sears L, et al. (2009) Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39: 619–634. doi: 10.1007/s10803-008-0662-7
|
[47] | Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543: 699–708. doi: 10.1113/jphysiol.2002.023317
|
[48] | Wankerl K, Weise D, Gentner R, Rumpf JJ, Classen J (2010) L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans. J Neurosci 30: 6197–6204. doi: 10.1523/jneurosci.4673-09.2010
|
[49] | Fitzgerald PB, Benitez J, Oxley T, Daskalakis JZ, de Castella AR, et al. (2005) A study of the effects of lorazepam and dextromethorphan on the response to cortical 1 Hz repetitive transcranial magnetic stimulation. Neuroreport 16: 1525–1528. doi: 10.1097/01.wnr.0000177005.14108.f1
|
[50] | Manahan-Vaughan D (1997) Group 1 and 2 metabotropic glutamate receptors play differential roles in hippocampal long-term depression and long-term potentiation in freely moving rats. J Neurosci 17: 3303–3311. doi: 10.1016/s0028-3908(98)00150-6
|
[51] | Watanabe K, Kamatani D, Hishida R, Kudoh M, Shibuki K (2007) Long-term depression induced by local tetanic stimulation in the rat auditory cortex. Brain Res 1166: 20–28. doi: 10.1016/j.brainres.2007.06.049
|
[52] | Kourrich S, Glasgow SD, Caruana DA, Chapman CA (2008) Postsynaptic signals mediating induction of long-term synaptic depression in the entorhinal cortex. Neural Plast 2008: 840374. doi: 10.1155/2008/840374
|
[53] | Wohrl R, von Haebler D, Heinemann U (2007) Low-frequency stimulation of the direct cortical input to area CA1 induces homosynaptic LTD and heterosynaptic LTP in the rat hippocampal-entorhinal cortex slice preparation. Eur J Neurosci 25: 251–258. doi: 10.1111/j.1460-9568.2006.05274.x
|
[54] | Rodriguez-Moreno A, Paulsen O (2008) Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nat Neurosci 11: 744–745. doi: 10.1038/nn.2125
|
[55] | Gersner R, Kravetz E, Feil J, Pell G, Zangen A (2011) Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 31: 7521–7526. doi: 10.1523/jneurosci.6751-10.2011
|
[56] | Thordstein M, Constantinescu R (2012) Possibly lifesaving, noninvasive, EEG-guided neuromodulation in anesthesia-refractory partial status epilepticus. Epilepsy Behav 25: 468–472. doi: 10.1016/j.yebeh.2012.07.026
|
[57] | Liu A, Pang T, Herman S, Pascual-Leone A, Rotenberg A (2013) Transcranial magnetic stimulation for refractory focal status epilepticus in the intensive care unit. Seizure 22: 893–896. doi: 10.1016/j.seizure.2013.06.014
|
[58] | Ghiglieri V, Pendolino V, Sgobio C, Bagetta V, Picconi B, et al. (2012) Theta-burst stimulation and striatal plasticity in experimental parkinsonism. Exp Neurol 236: 395–398. doi: 10.1016/j.expneurol.2012.04.020
|
[59] | Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63: 291–315. doi: 10.1124/pr.110.003020
|
[60] | Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 255: 3–18. doi: 10.1016/j.bbr.2013.02.037
|
[61] | Tostes JG, Medeiros P, Melo-Thomas L (2013) Modulation of haloperidol-induced catalepsy in rats by GABAergic neural substrate in the inferior colliculus. Neuroscience 255: 212–218. doi: 10.1016/j.neuroscience.2013.09.064
|
[62] | Tofts PS, Branston NM (1991) The measurement of electric field, and the influence of surface charge, in magnetic stimulation. Electroencephalogr Clin Neurophysiol 81: 238–239. doi: 10.1016/0168-5597(91)90077-b
|
[63] | Zheng J, Li L, Huo X (2005) Analysis of Electric Field in Real Rat Head Model during Transcranial Magnetic Stimulation. Conf Proc IEEE Eng Med Biol Soc 2: 1529–1532. doi: 10.1109/iembs.2005.1616724
|