全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Suppression of Motor Cortical Excitability in Anesthetized Rats by Low Frequency Repetitive Transcranial Magnetic Stimulation

DOI: 10.1371/journal.pone.0091065

Full-Text   Cite this paper   Add to My Lib

Abstract:

Repetitive transcranial magnetic stimulation (rTMS) is a widely-used method for modulating cortical excitability in humans, by mechanisms thought to involve use-dependent synaptic plasticity. For example, when low frequency rTMS (LF rTMS) is applied over the motor cortex, in humans, it predictably leads to a suppression of the motor evoked potential (MEP), presumably reflecting long-term depression (LTD) – like mechanisms. Yet how closely such rTMS effects actually match LTD is unknown. We therefore sought to (1) reproduce cortico-spinal depression by LF rTMS in rats, (2) establish a reliable animal model for rTMS effects that may enable mechanistic studies, and (3) test whether LTD-like properties are evident in the rat LF rTMS setup. Lateralized MEPs were obtained from anesthetized Long-Evans rats. To test frequency-dependence of LF rTMS, rats underwent rTMS at one of three frequencies, 0.25, 0.5, or 1 Hz. We next tested the dependence of rTMS effects on N-methyl-D-aspartate glutamate receptor (NMDAR), by application of two NMDAR antagonists. We find that 1 Hz rTMS preferentially depresses unilateral MEP in rats, and that this LTD-like effect is blocked by NMDAR antagonists. These are the first electrophysiological data showing depression of cortical excitability following LF rTMS in rats, and the first to demonstrate dependence of this form of cortical plasticity on the NMDAR. We also note that our report is the first to show that the capacity for LTD-type cortical suppression by rTMS is present under barbiturate anesthesia, suggesting that future neuromodulatory rTMS applications under anesthesia may be considered.

References

[1]  Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2: 145–156. doi: 10.1016/s1474-4422(03)00321-1
[2]  Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55: 187–199. doi: 10.1016/j.neuron.2007.06.026
[3]  Hoogendam JM, Ramakers GM, Di Lazzaro V (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3: 95–118. doi: 10.1016/j.brs.2009.10.005
[4]  Kobayashi M (2010) Effect of slow repetitive TMS of the motor cortex on ipsilateral sequential simple finger movements and motor skill learning. Restor Neurol Neurosci 28: 437–448.
[5]  Fregni F, Pascual-Leone A (2005) Transcranial magnetic stimulation for the treatment of depression in neurologic disorders. Curr Psychiatry Rep 7: 381–390. doi: 10.1007/s11920-005-0041-4
[6]  Patrizi F, Freedman SD, Pascual-Leone A, Fregni F (2006) Novel therapeutic approaches to the treatment of chronic abdominal visceral pain. ScientificWorldJournal 6: 472–490. doi: 10.1100/tsw.2006.98
[7]  Padberg F, George MS (2009) Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression. Exp Neurol 219: 2–13. doi: 10.1016/j.expneurol.2009.04.020
[8]  Rotenberg A, Bae EH, Takeoka M, Tormos JM, Schachter SC, et al. (2009) Repetitive transcranial magnetic stimulation in the treatment of epilepsia partialis continua. Epilepsy Behav 14: 253–257. doi: 10.1016/j.yebeh.2008.09.007
[9]  Rosen AC, Ramkumar M, Nguyen T, Hoeft F (2009) Noninvasive transcranial brain stimulation and pain. Curr Pain Headache Rep 13: 12–17. doi: 10.1007/s11916-009-0004-2
[10]  Rotenberg A (2010) Prospects for clinical applications of transcranial magnetic stimulation and real-time EEG in epilepsy. Brain Topogr 22: 257–266. doi: 10.1007/s10548-009-0116-3
[11]  Siegelbaum SA, Kandel ER (1991) Learning-related synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 1: 113–120. doi: 10.1016/0959-4388(91)90018-3
[12]  Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111: 800–805. doi: 10.1016/s1388-2457(99)00323-5
[13]  Rizzo V, Siebner HR, Modugno N, Pesenti A, Munchau A, et al. (2004) Shaping the excitability of human motor cortex with premotor rTMS. J Physiol 554: 483–495. doi: 10.1113/jphysiol.2003.048777
[14]  Peinemann A, Reimer B, Loer C, Quartarone A, Munchau A, et al. (2004) Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 115: 1519–1526. doi: 10.1016/j.clinph.2004.02.005
[15]  Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, et al. (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69: 86–94. doi: 10.1016/j.brainresbull.2005.11.003
[16]  Khedr EM, Rothwell JC, Ahmed MA, Shawky OA, Farouk M (2007) Modulation of motor cortical excitability following rapid-rate transcranial magnetic stimulation. Clin Neurophysiol 118: 140–145. doi: 10.1016/j.clinph.2006.09.006
[17]  Aydin-Abidin S, Trippe J, Funke K, Eysel UT, Benali A (2008) High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res 188: 249–261. doi: 10.1007/s00221-008-1356-2
[18]  Pell GS, Roth Y, Zangen A (2011) Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol 93: 59–98. doi: 10.1016/j.pneurobio.2010.10.003
[19]  Rotenberg A, Muller PA, Vahabzadeh-Hagh AM, Navarro X, Lopez-Vales R, et al. (2010) Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clin Neurophysiol 121: 104–108. doi: 10.1016/j.clinph.2009.09.008
[20]  Vahabzadeh-Hagh AM, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A (2011) Measures of cortical inhibition by paired-pulse transcranial magnetic stimulation in anesthetized rats. J Neurophysiol 105: 615–624. doi: 10.1152/jn.00660.2010
[21]  Vahabzadeh-Hagh AM, Muller PA, Gersner R, Zangen A, Rotenberg A (2012) Translational neuromodulation: approximating human transcranial magnetic stimulation protocols in rats. Neuromodulation 15: 296–305. doi: 10.1111/j.1525-1403.2012.00482.x
[22]  Rotenberg A, Muller P, Birnbaum D, Harrington M, Riviello JJ, et al. (2008) Seizure suppression by EEG-guided repetitive transcranial magnetic stimulation in the rat. Clin Neurophysiol 119: 2697–2702. doi: 10.1016/j.clinph.2008.09.003
[23]  Muller PA, Pascual-Leone A, Rotenberg A (2012) Safety and tolerability of repetitive transcranial magnetic stimulation in patients with pathologic positive sensory phenomena: a review of literature. Brain Stimul 5: 320–329 e327.
[24]  Sun W, Mao W, Meng X, Wang D, Qiao L, et al. (2012) Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia 53: 1782–1789. doi: 10.1111/j.1528-1167.2012.03626.x
[25]  Loeb C, Patrone A, Besio G, Balestrino M, Mainardi P (1990) The excitatory amino acid antagonist amino-phosphono-valeric acid (APV) provides protection against penicillin-induced epileptic activity in the rat. Epilepsy Res 6: 249–251. doi: 10.1016/0920-1211(90)90080-f
[26]  Loeb C, Patrone A, Besio G, Balestrino M, Mainardi P (1993) The antiepileptic effect of low-dose amino-phosphono-valeric acid (APV) is not enhanced by phosphatidylserine association. Seizure 2: 309–310. doi: 10.1016/s1059-1311(05)80146-3
[27]  Kent S, Kernahan SD, Levine S (1996) Effects of excitatory amino acids on the hypothalamic-pituitary-adrenal axis of the neonatal rat. Brain Res Dev Brain Res 94: 1–13. doi: 10.1016/0165-3806(96)00023-5
[28]  Guerrini L, Molteni A, Wirth T, Kistler B, Blasi F (1997) Glutamate-dependent activation of NF-kappaB during mouse cerebellum development. J Neurosci 17: 6057–6063.
[29]  McGuire M, Liu C, Cao Y, Ling L (2008) Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats. J Appl Physiol (1985) 105: 942–950. doi: 10.1152/japplphysiol.01274.2006
[30]  Bouras R, Chapman CA (2003) Long-term synaptic depression in the adult entorhinal cortex in vivo. Hippocampus 13: 780–790. doi: 10.1002/hipo.10124
[31]  de Olmos S, Bender C, de Olmos JS, Lorenzo A (2009) Neurodegeneration and prolonged immediate early gene expression throughout cortical areas of the rat brain following acute administration of dizocilpine. Neuroscience 164: 1347–1359. doi: 10.1016/j.neuroscience.2009.09.022
[32]  Han RZ, Hu JJ, Weng YC, Li DF, Huang Y (2009) NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 25: 367–375. doi: 10.1007/s12264-009-0608-x
[33]  Lai MC, Lui CC, Yang SN, Wang JY, Huang LT (2009) Epileptogenesis is increased in rats with neonatal isolation and early-life seizure and ameliorated by MK-801: a long-term MRI and histological study. Pediatr Res 66: 441–447. doi: 10.1203/pdr.0b013e3181b337d2
[34]  Whishaw IQ, Cioe JD, Previsich N, Kolb B (1977) The variability of the interaural line vs the stability of bregma in rat stereotaxic surgery. Physiol Behav 19: 719–722. doi: 10.1016/0031-9384(77)90304-3
[35]  Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, et al. (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48: 1398–1403. doi: 10.1212/wnl.48.5.1398
[36]  Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111: 1002–1007. doi: 10.1016/s1388-2457(00)00284-4
[37]  Benali A, Trippe J, Weiler E, Mix A, Petrasch-Parwez E, et al. (2011) Theta-burst transcranial magnetic stimulation alters cortical inhibition. J Neurosci 31: 1193–1203. doi: 10.1523/jneurosci.1379-10.2011
[38]  Funke K, Benali A (2011) Modulation of cortical inhibition by rTMS - findings obtained from animal models. J Physiol 589: 4423–4435. doi: 10.1113/jphysiol.2011.206573
[39]  Wang F, Geng X, Tao HY, Cheng Y (2010) The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area. J Mol Neurosci 41: 145–155. doi: 10.1007/s12031-009-9311-7
[40]  Nakano M, Yamada S, Udagawa R, Kato N (2004) Frequency-dependent requirement for calcium store-operated mechanisms in induction of homosynaptic long-term depression at hippocampus CA1 synapses. Eur J Neurosci 19: 2881–2887. doi: 10.1111/j.0953-816x.2004.03390.x
[41]  Cincotta M, Borgheresi A, Gambetti C, Balestrieri F, Rossi L, et al. (2003) Suprathreshold 0.3 Hz repetitive TMS prolongs the cortical silent period: potential implications for therapeutic trials in epilepsy. Clin Neurophysiol 114: 1827–1833. doi: 10.1016/s1388-2457(03)00181-0
[42]  Fitzgerald PB, Fountain S, Daskalakis ZJ (2006) A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117: 2584–2596. doi: 10.1016/j.clinph.2006.06.712
[43]  Brasil-Neto JP, de Araujo DP, Teixeira WA, Araujo VP, Boechat-Barros R (2004) Experimental therapy of epilepsy with transcranial magnetic stimulation: lack of additional benefit with prolonged treatment. Arq Neuropsiquiatr 62: 21–25. doi: 10.1590/s0004-282x2004000100004
[44]  Lee SL, Abraham M, Cacace AT, Silver SM (2008) Repetitive transcranial magnetic stimulation in veterans with debilitating tinnitus: a pilot study. Otolaryngol Head Neck Surg 138: 398–399. doi: 10.1016/j.otohns.2007.11.035
[45]  Dragasevic N, Potrebic A, Damjanovic A, Stefanova E, Kostic VS (2002) Therapeutic efficacy of bilateral prefrontal slow repetitive transcranial magnetic stimulation in depressed patients with Parkinson's disease: an open study. Mov Disord 17: 528–532. doi: 10.1002/mds.10109
[46]  Sokhadze EM, El-Baz A, Baruth J, Mathai G, Sears L, et al. (2009) Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. J Autism Dev Disord 39: 619–634. doi: 10.1007/s10803-008-0662-7
[47]  Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543: 699–708. doi: 10.1113/jphysiol.2002.023317
[48]  Wankerl K, Weise D, Gentner R, Rumpf JJ, Classen J (2010) L-type voltage-gated Ca2+ channels: a single molecular switch for long-term potentiation/long-term depression-like plasticity and activity-dependent metaplasticity in humans. J Neurosci 30: 6197–6204. doi: 10.1523/jneurosci.4673-09.2010
[49]  Fitzgerald PB, Benitez J, Oxley T, Daskalakis JZ, de Castella AR, et al. (2005) A study of the effects of lorazepam and dextromethorphan on the response to cortical 1 Hz repetitive transcranial magnetic stimulation. Neuroreport 16: 1525–1528. doi: 10.1097/01.wnr.0000177005.14108.f1
[50]  Manahan-Vaughan D (1997) Group 1 and 2 metabotropic glutamate receptors play differential roles in hippocampal long-term depression and long-term potentiation in freely moving rats. J Neurosci 17: 3303–3311. doi: 10.1016/s0028-3908(98)00150-6
[51]  Watanabe K, Kamatani D, Hishida R, Kudoh M, Shibuki K (2007) Long-term depression induced by local tetanic stimulation in the rat auditory cortex. Brain Res 1166: 20–28. doi: 10.1016/j.brainres.2007.06.049
[52]  Kourrich S, Glasgow SD, Caruana DA, Chapman CA (2008) Postsynaptic signals mediating induction of long-term synaptic depression in the entorhinal cortex. Neural Plast 2008: 840374. doi: 10.1155/2008/840374
[53]  Wohrl R, von Haebler D, Heinemann U (2007) Low-frequency stimulation of the direct cortical input to area CA1 induces homosynaptic LTD and heterosynaptic LTP in the rat hippocampal-entorhinal cortex slice preparation. Eur J Neurosci 25: 251–258. doi: 10.1111/j.1460-9568.2006.05274.x
[54]  Rodriguez-Moreno A, Paulsen O (2008) Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nat Neurosci 11: 744–745. doi: 10.1038/nn.2125
[55]  Gersner R, Kravetz E, Feil J, Pell G, Zangen A (2011) Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 31: 7521–7526. doi: 10.1523/jneurosci.6751-10.2011
[56]  Thordstein M, Constantinescu R (2012) Possibly lifesaving, noninvasive, EEG-guided neuromodulation in anesthesia-refractory partial status epilepticus. Epilepsy Behav 25: 468–472. doi: 10.1016/j.yebeh.2012.07.026
[57]  Liu A, Pang T, Herman S, Pascual-Leone A, Rotenberg A (2013) Transcranial magnetic stimulation for refractory focal status epilepticus in the intensive care unit. Seizure 22: 893–896. doi: 10.1016/j.seizure.2013.06.014
[58]  Ghiglieri V, Pendolino V, Sgobio C, Bagetta V, Picconi B, et al. (2012) Theta-burst stimulation and striatal plasticity in experimental parkinsonism. Exp Neurol 236: 395–398. doi: 10.1016/j.expneurol.2012.04.020
[59]  Rogan SC, Roth BL (2011) Remote control of neuronal signaling. Pharmacol Rev 63: 291–315. doi: 10.1124/pr.110.003020
[60]  Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 255: 3–18. doi: 10.1016/j.bbr.2013.02.037
[61]  Tostes JG, Medeiros P, Melo-Thomas L (2013) Modulation of haloperidol-induced catalepsy in rats by GABAergic neural substrate in the inferior colliculus. Neuroscience 255: 212–218. doi: 10.1016/j.neuroscience.2013.09.064
[62]  Tofts PS, Branston NM (1991) The measurement of electric field, and the influence of surface charge, in magnetic stimulation. Electroencephalogr Clin Neurophysiol 81: 238–239. doi: 10.1016/0168-5597(91)90077-b
[63]  Zheng J, Li L, Huo X (2005) Analysis of Electric Field in Real Rat Head Model during Transcranial Magnetic Stimulation. Conf Proc IEEE Eng Med Biol Soc 2: 1529–1532. doi: 10.1109/iembs.2005.1616724

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133