全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Roles of Autophagy in MPP+-Induced Neurotoxicity In Vivo: The Involvement of Mitochondria and α-Synuclein Aggregation

DOI: 10.1371/journal.pone.0091074

Full-Text   Cite this paper   Add to My Lib

Abstract:

Macroautophagy (also known as autophagy) is an intracellular self-eating mechanism and has been proposed as both neuroprotective and neurodestructive in the central nervous system (CNS) neurodegenerative diseases. In the present study, the role of autophagy involving mitochondria and α-synuclein was investigated in MPP+ (1-methyl-4-phenylpyridinium)-induced oxidative injury in chloral hydrate-anesthetized rats in vivo. The oxidative mechanism underlying MPP+-induced neurotoxicity was identified by elevated lipid peroxidation and heme oxygenase-1 levels, a redox-regulated protein in MPP+-infused substantia nigra (SN). At the same time, MPP+ significantly increased LC3-II levels, a hallmark protein of autophagy. To block MPP+-induced autophagy in rat brain, Atg7siRNA was intranigrally infused 4 d prior to MPP+ infusion. Western blot assay showed that in vivo Atg7siRNA transfection not only reduced Atg7 levels in the MPP+-infused SN but attenuated MPP+-induced elevation in LC3-II levels, activation of caspase 9 and reduction in tyrosine hydroxylase levels, indicating that autophagy is pro-death. The immunostaining study demonstrated co-localization of LC3 and succinate dehydrogenase (a mitochondrial complex II) as well as LC3 and α-synuclein, suggesting that autophagy may engulf mitochondria and α-synuclein. Indeed, in vivo Atg7siRNA transfection mitigated MPP+-induced reduction in cytochrome c oxidase. In addition, MPP+-induced autophagy differentially altered the α-synuclein aggregates in the infused SN. In conclusion, autophagy plays a prodeath role in the MPP+-induced oxidative injury by sequestering mitochondria in the rat brain. Moreover, our data suggest that the benefits of autophagy depend on the levels of α-synuclein aggregates in the nigrostriatal dopaminergic system of the rat brain.

References

[1]  Fengsrud M, Erichsen ES, Berg TO, Raiborg C, Seglen PO (2000) Ultrastructural characterization of the delimiting membranes of isolated autophagosomes and amphisomes by freeze-fracture electron microscopy. Eur J Cell Biol 79: 871–882. doi: 10.1078/0171-9335-00125
[2]  Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, et al. (2000) A ubiquitin-like system mediates protein lipidation. Nature 408: 488–92. doi: 10.1038/35044114
[3]  Uchiyama Y, Shibata M, Koike M, Yoshimura K, Sasaki M (2008) Autophagy-physiology and pathophysiology. Histochem Cell Biol 129: 407–420. doi: 10.1007/s00418-008-0406-y
[4]  Cuervo AM (2004) Autophagy: in sickness and in health. Trends Cell Biol 14: 70–77. doi: 10.1016/j.tcb.2003.12.002
[5]  Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, et al. (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol 12: 25–31.
[6]  Li L, Wang X, Fei X, Xia L, Qin Z, et al. (2011) Parkinson's disease involves autophagy and abnormal distribution of cathepsin L. Neurosci Lett 489: 62–67. doi: 10.1016/j.neulet.2010.11.068
[7]  Sridhar S, Botbol Y, Macian F, Cuervo AM (2012) Autophagy and disease: always two sides to a problem. J Pathol 226: 255–273. doi: 10.1002/path.3025
[8]  Hung SY, Huang WP, Liou HC, Fu WM (2009) Autophagy protects neuron from Abeta-induced cytotoxicity. Autophagy 5: 502–510. doi: 10.4161/auto.5.4.8096
[9]  Tzeng YW, Lee LY, Chao PL, Lee HC, Wu RT, et al. (2010) Role of autophagy in protection afforded by hypoxic preconditioning against MPP+-induced neurotoxicity in SH-SY5Y cells. Free Radic Biol Med 49: 839–846. doi: 10.1016/j.freeradbiomed.2010.06.004
[10]  Hochfeld WE, Lee S, Rubinsztein DC (2013) Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacol Sin 34: 600–604. doi: 10.1038/aps.2012.189
[11]  Liu K, Shi N, Sun Y, Zhang T, Sun X (2013) Therapeutic Effects of Rapamycin on MPTP-Induced Parkinsonism in Mice. Neurochem Res 38: 201–207. doi: 10.1007/s11064-012-0909-8
[12]  Chang CF, Huang HJ, Lee HC, Hung KC, Wu RT, et al. (2012) Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J Pineal Res 52: 312–21. doi: 10.1111/j.1600-079x.2011.00945.x
[13]  Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, et al. (2000) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170: 75–86. doi: 10.2353/ajpath.2007.060524
[14]  Bursch W, Ellinger A, Gerner C, Fr?hwein U, Schulte-Hermann R (2000) Programmed cell death (PCD): Apoptosis autophagic PCD or others? Ann N Y Acad Sci 926: 1–12. doi: 10.1111/j.1749-6632.2000.tb05594.x
[15]  Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, et al. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9: 92–97. doi: 10.1002/mds.870090115
[16]  Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ, et al. (2004) Alpha-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J Biol Chem 279: 15240–15247. doi: 10.1074/jbc.m312497200
[17]  Lee J, Giordano S, Zhang J (2012) Autophagy mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 41: 523–540. doi: 10.1042/bj20111451
[18]  Nakagawa T, Zhu H, Morishima N, Li E, Xu J, et al. (2004) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98–103. doi: 10.1038/47513
[19]  Singer TP, Ramsay RR (1990) Mechanism of the neurotoxicity of MPTP. FEBS Lett 274: 1–8. doi: 10.1016/0014-5793(90)81315-f
[20]  Zhu J H, Gusdon AM, Cimen H, Van Houten B, Koc E, et al. (2012) Impaired mitochondrial biogenesis contributes to depletion of functional mitochondria in chronic MPP+ toxicity: dual roles for ERK1/2. Cell Death Dis 3: e312. doi: 10.1038/cddis.2012.46
[21]  Janda E, Isidoro C, Carresi C, Mollace V (2012) Defective autophagy in Parkinson's disease: role of oxidative stress. Mol Neurobiol 46: 639–661. doi: 10.1007/s12035-012-8318-1
[22]  Chandramani Shivalingappa P, Jin H, Anantharam V, Kanthasamy A, Kanthasamy A (2012) N-Acetylcysteine protects against methamphetamine-induced dopaminergic neurodegeneration via modulation of redox status and autophagy in dopaminergic cells. Parkinsons Dis Article ID 424285.
[23]  Cherra SJ, Dagda RK, Tandon A, Chu CT (2009) Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy 5: 1213–1214. doi: 10.4161/auto.5.8.10050
[24]  Xilouri M, Stefanis L (2011) Autophagic pathways in Parkinson disease and related disorders. Expert Rev Mol Med 13: e8. doi: 10.1017/s1462399411001803
[25]  Davidson WS, Jonas A, Clayton DF, George JM (1988) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273: 9443–49. doi: 10.1074/jbc.273.16.9443
[26]  Marques O, Outeiro TF (2012) Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 3: e350. doi: 10.1038/cddis.2012.94
[27]  Miller DW, Hague SM, Clarimon J, Baptista M, Gwinn-Hardy K, et al. (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62: 1835–1838. doi: 10.1212/01.wnl.0000127517.33208.f4
[28]  Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. PNAS 95: 6469–6473. doi: 10.1073/pnas.95.11.6469
[29]  Jensen PH, Nielsen MS, Jakes R, Dotti CG, Goedert M (1998) Binding of α-synuclein to brain vesicles is abolished by familial Parkinson's disease mutation. J Biol Chem 273: 26292–26294. doi: 10.1074/jbc.273.41.26292
[30]  Zhu M, Li W, Lu C (2012) Role of α-synuclein protein levels in mitochondrial morphology and cell survival in cell lines. PLoS One 7: e36377. doi: 10.1371/journal.pone.0036377
[31]  Cai ZL, Shi JJ, Yang YP, Cao BY, Wang F, et al. (2009) MPP+ impairs autophagic clearance of α-synuclein by impairing the activity of dynein. Neuroreport 20: 569–573. doi: 10.1097/wnr.0b013e32832986c4
[32]  Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, et al. (2000) MPTP induces α-synuclein aggregation in the substantia nigra of baboons. Neuroreport 11: 211–213. doi: 10.1097/00001756-200001170-00041
[33]  Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6: 352–361. doi: 10.1016/s1474-4422(07)70076-5
[34]  Webb J, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) α-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278: 25009–25013. doi: 10.1074/jbc.m300227200
[35]  Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press New York 27: 121–143. doi: 10.1016/b978-0-12-547620-1.50006-0
[36]  Kikugawa K, Kato T, Beppu M, Haysaaka A (1989) Fluorescent and crosslinked protein formed by free radical and aldehyde species generated during lipid peroxidation. Adv Exp Med Biol 266: 345–356.
[37]  Chiueh CC, Zukowaka-Grojec Z, Kirk KL, Kopin IJ (1983) 6-Fluorocatecholamines as false adrenergic neurotransmitters. J Pharmacol Exp Ther 225: 529–533.
[38]  Lin AM, Yang CH, Ueng YF, Luh TY, Liu TY, et al. (2004) Differential effects of carboxyfullerene on MPP+/MPTP-induced neurotoxicity. Neurochem Int 44: 99–105. doi: 10.1016/s0197-0186(03)00113-x
[39]  Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3: 542–545.
[40]  Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in eurodegeneration. Nature 443: 780–786. doi: 10.1038/nature05291
[41]  Schipper HM (2004) Heme oxygenase-1: transducer of pathological brain iron sequestration under oxidative stress. Ann NY Acad Sci 1012: 84–93. doi: 10.1196/annals.1306.007
[42]  Lee HC, Yin PH, Chi CW, Wei YH (2002) Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci 9: 517–26. doi: 10.1007/bf02254978
[43]  Miranda S, Foncea R, Guerrero J, Leighton F (1999) Oxidative stress and up-regulation of mitochondrial biogenesis genes in mitochondrial DNA-depleted HeLa cells. Biochem Biophys Res Commun 258: 44–49. doi: 10.1006/bbrc.1999.0580
[44]  Caughey B, Lansbury PT (2003) Protofibrils pores fibrils and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26: 267–298. doi: 10.1146/annurev.neuro.26.010302.081142
[45]  Lin AM, Chao PL, Fang SF, Chi CW, Yang CH (2007) Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain. Toxicol Appl Pharmacol 224: 138–146. doi: 10.1016/j.taap.2007.06.016
[46]  Yu HC, Feng SF, Chao PL, Lin AM (2010) Anti-inflammatory effects of pioglitazone on iron-induced oxidative injury in the nigrostriatal dopaminergic system. Neuropathol Applied Neurobiol 36: 612–622. doi: 10.1111/j.1365-2990.2010.01107.x
[47]  Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305: 1292–1295. doi: 10.1126/science.1101738
[48]  Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283: 23542–23556. doi: 10.1074/jbc.m801992200
[49]  Lee HJ, Khoshaghideh F, Patel S, Lee SJ (2004) Clearance of α-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci 24: 1888–1896. doi: 10.1523/jneurosci.3809-03.2004
[50]  Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, et al. (2011) Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson's disease. J Neurochem 116: 588–605. doi: 10.1111/j.1471-4159.2010.07143.x
[51]  Nakagawa T, Zhu H, Morishima N, Li E, Xu J, et al. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98–103. doi: 10.1038/47513
[52]  Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, et al. (2010) α-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 190: 1023–1037. doi: 10.1083/jcb.201003122
[53]  Bennett E, Bence N, Jayakumar R, Kopito R (2005) Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell 17: 351–65. doi: 10.1016/j.molcel.2004.12.021

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133