全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

HY Immune Tolerance Is Common in Women without Male Offspring

DOI: 10.1371/journal.pone.0091274

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Sex difference is an established risk factor for hematopoietic stem cell transplantation (HSCT)-related complications like graft versus host disease (GVHD). CD8pos cytotoxic T cells specific for Y chromosome-encoded minor Histocompatibility antigens (HY) play an important role therein. Prior to HSC donation, female donors may encounter HY antigens through fetomaternal or transmaternal cell flow, potentially leading to the induction of HY-specific cytotoxic or regulatory immune responses. Whether HY priming occurs independent of parity, and whether HY priming is dependent on the presence of male microchimerism, is as yet unknown. Methods We investigated the presence of HY-specific regulatory T cells (Treg) and male microchimerism in 45 healthy women with a fully documented pregnancy and family history. HY peptide-induced linked suppression, a commonly reported functional feature of CD4pos and CD8pos Treg, was measured by trans vivo Delayed Type Hypersensitivity testing. As source of HY antigens, male microchimerism was analyzed by real-time PCR and defined by the presence of male DNA in at least one purified leukocyte cell type. Results HLA class I or class II restricted HY-specific Treg were detected in 26/42 (62%) women eligible for analysis. The prevalence of HY-specific Treg was significantly higher in women who had never given birth to sons than in women with male offspring (p = 0.004). Male microchimerism could be detected in 24 out of 45 (53%) women but did not correlate with the presence of HY specific Treg. Conclusions HY-specific Treg in women with male offspring have been described previously. Here we show for the first time that, in fact, HY specific Treg are more common in nulliparous women and in parous women with female offspring. Their presence is independent of the presence of male microchimerism. Whether HY-specific Treg presence in female stem cell grafts might decrease the GVHD incidence in male HSCT recipients needs to be investigated.

References

[1]  Loren AW, Bunin GR, Boudreau C, Champlin RE, Cnaan A, et al. (2006) Impact of donor and recipient sex and parity on outcomes of HLA-identical sibling allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 12: 758–769. doi: 10.1016/j.bbmt.2006.03.015
[2]  Mutis T, Gillespie G, Schrama E, Falkenburg JH, Moss P, et al. (1999) Tetrameric HLA class I-minor histocompatibility antigen peptide complexes demonstrate minor histocompatibility antigen-specific cytotoxic T lymphocytes in patients with graft-versus-host disease. Nat Med 5: 839–842. doi: 10.1016/s0887-7963(00)80134-0
[3]  Kim YH, Faaij CM, Van Halteren AG, Schrama E, de Jong TA, et al. (2012) In situ detection of HY-specific T cells in acute graft-versus-host disease-affected male skin after sex-mismatched stem cell transplantation. Biol Blood Marrow Transplant 18: 381–387 S1083-8791(11)00463-0 [pii];10.1016/j.bbmt.2011.10.038 [doi]. doi: 10.1016/j.bbmt.2011.10.038
[4]  Lissauer D, Piper K, Goodyear O, Kilby MD, Moss PA (2012) Fetal-specific CD8+ cytotoxic T cell responses develop during normal human pregnancy and exhibit broad functional capacity. J Immunol 189: 1072–1080 jimmunol.1200544 [pii];10.4049/jimmunol.1200544 [doi]. doi: 10.4049/jimmunol.1200544
[5]  Verdijk RM, Kloosterman A, Pool J, Van De Keur M, Naipal AM, et al. (2004) Pregnancy induces minor histocompatibility antigen-specific cytotoxic T cells: implications for stem cell transplantation and immunotherapy. Blood 103: 1961–1964. doi: 10.1182/blood-2003-05-1625
[6]  Piper KP, McLarnon A, Arrazi J, Horlock C, Ainsworth J, et al. (2007) Functional HY-specific CD8+ T cells are found in a high proportion of women following pregnancy with a male fetus. Biol Reprod 76: 96–101. doi: 10.1095/biolreprod.106.055426
[7]  van Halteren AGS, Jankowska-Gan E, Joosten A, Blokland E, Pool J, et al. (2009) Naturally acquired tolerance and sensitization to minor histocompatibility antigens in healthy family members. Blood 114: 2263–2272. doi: 10.1182/blood-2009-01-200410
[8]  Gammill HS, Nelson JL (2010) Naturally acquired microchimerism. International Journal of Developmental Biology 54: 531–543. doi: 10.1387/ijdb.082767hg
[9]  Dierselhuis MP, Blokland EC, Pool J, Schrama E, Scherjon SA, et al. (2012) Transmaternal cell flow leads to antigen-experienced cord blood. Blood 120: 505–510 blood-2012-02-410571 [pii];10.1182/blood-2012-02-410571 [doi]. doi: 10.1182/blood-2012-02-410571
[10]  de Bellefon LM, Heiman P, Kanaan SB, Azzouz DF, Rak JM, et al. (2010) Cells from a vanished twin as a source of microchimerism 40 years later. Chimerism 1: 56–60 10.4161/chim.1.2.14294 [doi]. doi: 10.4161/chim.1.2.14294
[11]  Sakaguchi S, Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T (2009) Regulatory T cells: how do they suppress immune responses? Int Immunol 21: 1105–1111 dxp095 [pii];10.1093/intimm/dxp095 [doi]. doi: 10.1093/intimm/dxp095
[12]  VanBuskirk AM, Wakely ME, Sirak JH, Orosz CG (1998) Patterns of allosensitization in allograft recipients: long-term cardiac allograft acceptance is associated with active alloantibody production in conjunction with active inhibition of alloreactive delayed-type hypersensitivity. Transplantation 65: 1115–1123. doi: 10.1097/00007890-199804270-00017
[13]  VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, Chin T, Kusaka S, et al. (2000) Human allograft acceptance is associated with immune regulation. J Clin Invest 106: 145–155. doi: 10.1172/jci9171
[14]  Jankowska-Gan E, Hegde S, Burlingham WJ (2013) Trans-vivo delayed type hypersensitivity assay for antigen specific regulation. J Vis Exp e4454 10.3791/4454 [doi]. doi: 10.3791/4454
[15]  Jankowska-Gan E, Rhein T, Haynes LD, Geissler F, Mulder A, et al. (2002) Human liver allograft acceptance and the “tolerance assay”. II. Donor HLA-A, -B but not DR antigens are able to trigger regulation of DTH. Hum Immunol 63: 862–870 S0198885902004500 [pii]. doi: 10.1016/s0198-8859(02)00450-0
[16]  Olson BM, Jankowska-Gan E, Becker JT, Vignali DA, Burlingham WJ, et al. (2012) Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. J Immunol 189: 5590–5601 jimmunol.1201744 [pii];10.4049/jimmunol.1201744 [doi]. doi: 10.4049/jimmunol.1201744
[17]  Spierings E, Goulmy E (2012) Minor histocompatibility antigen typing by DNA sequencing for clinical practice in hematopoietic stem-cell transplantation. Methods Mol Biol 882: 509–530 10.1007/978-1-61779-842-9_29 [doi]. doi: 10.1007/978-1-61779-842-9_29
[18]  Burlingham WJ, Jankowska-Gan E (2007) Mouse strain and injection site are crucial for detecting linked suppression in transplant recipients by trans-vivo DTH assay. Am J Transplant 7: 466–470 AJT1627 [pii];10.1111/j.1600-6143.2006.01627.x [doi]. doi: 10.1111/j.1600-6143.2006.01627.x
[19]  Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611–622 clinchem.2008.112797 [pii];10.1373/clinchem.2008.112797 [doi]. doi: 10.1373/clinchem.2008.112797
[20]  Fehse B, Chukhlovin A, Kuhlcke K, Marinetz O, Vorwig O, et al. (2001) Real-time quantitative Y chromosome-specific PCR (QYCS-PCR) for monitoring hematopoietic chimerism after sex-mismatched allogeneic stem cell transplantation. J Hematother Stem Cell Res 10: 419–425. doi: 10.1089/152581601750289028
[21]  Drabbels JJ, van der Keur C, Kemps BM, Mulder A, Scherjon SA, et al. (2011) HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations. Blood blood-2011-06-362053 [pii];10.1182/blood-2011-06-362053 [doi]. doi: 10.1182/blood-2011-06-362053
[22]  Evans PC, Lambert N, Maloney S, Furst DE, Moore JM, et al. (1999) Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 93: 2033–2037.
[23]  Bucher C, Stern M, Buser A, Heim D, Paulussen M, et al. (2007) Role of primacy of birth in HLA-identical sibling transplantation. Blood 110: 468–469. doi: 10.1182/blood-2007-02-076257
[24]  Yan Z, Lambert NC, Guthrie KA, Porter AJ, Loubiere LS, et al. (2005) Male microchimerism in women without sons: Quantitative assessment and correlation with pregnancy history. American Journal of Medicine 118: 899–906. doi: 10.1016/j.amjmed.2005.03.037
[25]  Quayle AJ, Xu C, Mayer KH, Anderson DJ (1997) T lymphocytes and macrophages, but not motile spermatozoa, are a significant source of human immunodeficiency virus in semen. J Infect Dis 176: 960–968. doi: 10.1086/516541
[26]  Ariga H, Ohto H, Busch MP, Imamura S, Watson R, et al. (2001) Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 41: 1524–1530. doi: 10.1046/j.1537-2995.2001.41121524.x
[27]  Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 93: 705–708. doi: 10.1073/pnas.93.2.705
[28]  O'Donoghue K, Chan J, de la Fuente J, Kennea N, Sandison A, et al. (2004) Microchimerism in female bone marrow and bone decades after fetal mesenchymal stem-cell trafficking in pregnancy. Lancet 364: 179–182. doi: 10.1016/s0140-6736(04)16631-2
[29]  Koopmans M, Kremer H, I, Baelde HJ, Fernandes RJ, de Heer E, et al. (2005) Chimerism in kidneys, livers and hearts of normal women: implications for transplantation studies. Am J Transplant 5: 1495–1502. doi: 10.1111/j.1600-6143.2005.00858.x
[30]  Dutta P, Burlingham WJ (2010) Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism 1: 2–10 10.4161/chim.1.1.12667 [doi]. doi: 10.4161/chim.1.1.12667
[31]  Cai J, Lee J, Jankowska-Gan E, Derks R, Pool J, et al. (2004) Minor H Antigen HA-1-specific Regulator and Effector CD8+ T Cells, and HA-1 Microchimerism, in Allograft Tolerance. J Exp Med 199: 1017–1023. doi: 10.1084/jem.20031012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133