[1] | Mumcuoglu KY, Ingber A, Gilead L, Stessman J, Friedmann R, et al. (1998) Maggot therapy for the treatment of diabetic foot ulcers. Diabetes Care 21: 2030–2031. doi: 10.2337/diacare.21.11.2030
|
[2] | Jukema GN, Menon AG, Bernards AT, Steenvoorde P, Rastegar AT, et al. (2002) Amputation-sparing treatment by nature: “Surgical” maggots revisited. ClinInfectDis 35: 1566–1571. doi: 10.1086/344904
|
[3] | Sherman RA, Pechter EA (1988) Maggot therapy: a review of the therapeutic applications of fly larvae in human medicine, especially for treating osteomyelitis. MedVetEntomol 2: 225–230. doi: 10.1111/j.1365-2915.1988.tb00188.x
|
[4] | Namias N, Varela JE, Varas RP, Quintana O, Ward CG (2000) Biodebridement: a case report of maggot therapy for limb salvage after fourth-degree burns. JBurn Care Rehabil 21: 254–257. doi: 10.1097/00004630-200021030-00012
|
[5] | van der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, et al. (2008) Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. JAntimicrobChemother 61: 117–122. doi: 10.1093/jac/dkm407
|
[6] | van der Plas MJ, Dambrot C, Dogterom-Ballering HC, Kruithof S, van Dissel JT, et al. (2010) Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother 65: 917–923. doi: 10.1093/jac/dkq042
|
[7] | Robinson W, Norwood VH (1933) The role of surgical maggots in the disinfection of osteomyelitis and other infected wounds. J Bone Joint Surg Am 15 409–412.
|
[8] | Andersen AS, Jorgensen B, Bjarnsholt T, Johansen H, Karlsmark T, et al. (2009) Quorum Sensing Regulated Virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots. Microbiology 156: 400–407. doi: 10.1099/mic.0.032730-0
|
[9] | Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, et al. (2010) A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother 65: 1646–1654. doi: 10.1093/jac/dkq165
|
[10] | Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, et al. (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science 328: 1168–1172. doi: 10.1126/science.1185723
|
[11] | van der Plas MJ, van der Does AM, Baldry M, Dogterom-Ballering HC, van Gulpen C, et al. (2007) Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. MicrobesInfect 9: 507–514. doi: 10.1016/j.micinf.2007.01.008
|
[12] | van der Plas MJA, Baldry M, van Dissel JT, Jukema GN, Nibbering PH (2009) Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP. Diabetologia 52: 1962–1970. doi: 10.1007/s00125-009-1432-6
|
[13] | van der Plas MJ, van Dissel JT, Nibbering PH (2009) Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. PLoS One 4: e8071. doi: 10.1371/journal.pone.0008071
|
[14] | Horobin AJ, Shakesheff KM, Pritchard DI (2005) Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal fibroblasts over a fibronectin-coated surface. WoundRepair Regen 13: 422–433. doi: 10.1111/j.1067-1927.2005.130410.x
|
[15] | Horobin AJ, Shakesheff KM, Pritchard DI (2006) Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. JInvest Dermatol 126: 1410–1418. doi: 10.1038/sj.jid.5700256
|
[16] | Schmidtchen A, Wolff H, Rydengard V, Hansson C (2003) Detection of serine proteases secreted by Lucilia sericata in vitro and during treatment of a chronic leg ulcer. Acta DermVenereol 83: 310–311. doi: 10.1080/00015550310016689
|
[17] | Vistnes LM, Lee R, Ksander GA (1981) Proteolytic activity of blowfly larvae secretions in experimental burns. Surgery 90: 835–841.
|
[18] | Andersen A, Joergensen B, Karlsmark T, van der Plas MJA, Krogfelt KA (2008) Novel Lipase Activity detected in induced Lucilia sericata excretions/secretions. 18th European Tissue Repair Society Meeting, Malta.
|
[19] | Telford G, Brown AP, Seabra RA, Horobin AJ, Rich A, et al. (2010) Degradation of eschar from venous leg ulcers using a recombinant chymotrypsin from Lucilia sericata. Br J Dermatol 163: 523–531. doi: 10.1111/j.1365-2133.2010.09854.x
|
[20] | Telford G, Brown AP, Rich A, English JS, Pritchard DI (2012) Wound debridement potential of glycosidases of the wound-healing maggot, Lucilia sericata. Med Vet Entomol 26: 291–299. doi: 10.1111/j.1365-2915.2011.01000.x
|
[21] | Brown A, Horobin A, Blount DG, Hill PJ, English J, et al. (2012) Blow fly Lucilia sericata nuclease digests DNA associated with wound slough/eschar and with Pseudomonas aeruginosa biofilm. Med Vet Entomol 26: 432–439. doi: 10.1111/j.1365-2915.2012.01029.x
|
[22] | Fine A, Alexander H (1934) Maggot therapy: Technique and Clinical Application. J Bone Joint Surg Am 16: 572–582.
|
[23] | Clark RA (2001) Fibrin and wound healing. AnnNYAcadSci 936: 355–367. doi: 10.1111/j.1749-6632.2001.tb03522.x
|
[24] | Lasne D, Jude B, Susen S (2006) From normal to pathological hemostasis. CanJAnaesth 53: S2–11. doi: 10.1007/bf03022247
|
[25] | Agren MS, Werthen M (2007) The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. IntJLow ExtremWounds 6: 82–97. doi: 10.1177/1534734607301394
|
[26] | Agirbasli M (2005) Pivotal role of plasminogen-activator inhibitor 1 in vascular disease. IntJClinPract 59: 102–106. doi: 10.1111/j.1742-1241.2005.00379.x
|
[27] | Wysocki AB, Kusakabe AO, Chang S, Tuan TL (1999) Temporal expression of urokinase plasminogen activator, plasminogen activator inhibitor and gelatinase-B in chronic wound fluid switches from a chronic to acute wound profile with progression to healing. WoundRepair Regen 7: 154–165. doi: 10.1046/j.1524-475x.1999.00154.x
|
[28] | Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. JImmunolMethods 137: 167–173. doi: 10.1016/0022-1759(91)90021-7
|
[29] | Steen H, Pandey A, Andersen JS, Mann M (2002) Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method. Sci STKE 2002: pl16. doi: 10.1126/stke.2002.154.pl16
|
[30] | Becker F, Schnorr K, Wilting R, Tolstrup N, Bendtsen JD, et al. (2004) Development of in vitro transposon assisted signal sequence trapping and its use in screening Bacillus halodurans C125 and Sulfolobus solfataricus P2 gene libraries. J MicrobiolMethods 57: 123–133. doi: 10.1016/j.mimet.2003.12.002
|
[31] | Frishman D, Albermann K, Hani J, Heumann K, Metanomski A, et al. (2001) Functional and structural genomics using PEDANT. Bioinformatics 17: 44–57. doi: 10.1093/bioinformatics/17.1.44
|
[32] | Walter MC, Rattei T, Arnold R, Guldener U, Munsterkotter M, et al. (2009) PEDANT covers all complete RefSeq genomes. Nucleic Acids Res 37: D408–D411. doi: 10.1093/nar/gkn749
|
[33] | Woeldike HF (1989) Production of proteins in Aspergillus - using promoter and upstream activating sequences derived from Aspergillus niger amylase genes.
|
[34] | Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113: 51–56. doi: 10.1016/s0926-6593(66)80120-0
|
[35] | Fredenburgh JC, Nesheim ME (1992) Lys-plasminogen is a significant intermediate in the activation of Glu-plasminogen during fibrinolysis in vitro. JBiolChem 267: 26150–26156.
|
[36] | Kim PY, Tieu LD, Stafford AR, Fredenburgh JC, Weitz JI (2012) A high affinity interaction of plasminogen with fibrin is not essential for efficient activation by tissue-type plasminogen activator. J Biol Chem 287: 4652–4661. doi: 10.1074/jbc.m111.317719
|
[37] | Machovich R, Owen WG (1997) Denatured proteins as cofactors for plasminogen activation. Arch Biochem Biophys 344: 343–349. doi: 10.1006/abbi.1997.0221
|
[38] | Radcliffe R, Heinze T (1981) Stimulation of tissue plasminogen activator by denatured proteins and fibrin clots: a possible additional role for plasminogen activator? Arch Biochem Biophys 211: 750–761. doi: 10.1016/0003-9861(81)90512-9
|
[39] | Christensen U, Sottrup-Jensen L, Magnusson S, Petersen TE, Clemmensen I (1979) Enzymic properties of the neo-plasmin-val-442 (miniplasmin). Biochim Biophys Acta 567: 472–481. doi: 10.1016/0005-2744(79)90133-5
|
[40] | Moroz LA (1981) Mini-plasminogen: a mechanism for leukocyte modulation of plasminogen activation by urokinase. Blood 58: 97–104.
|
[41] | Machovich R, Owen WG (1989) An elastase-dependent pathway of plasminogen activation. Biochemistry 28: 4517–4522. doi: 10.1021/bi00436a059
|
[42] | Weil GC, Simon RJ, Sweadner WR (1933) A biological, bacteriological and clinical study of larval or maggot therapy in the treatment of acute and chronic pyogenic infections. AmJSurg 19: 36–48. doi: 10.1016/s0002-9610(33)90461-4
|
[43] | Steenvoorde P, Oskam J (2005) Bleeding complications in patients treated with maggot debridement therapy. IntJLow ExtremWounds 4: 57–58.
|
[44] | Church JC (2005) Re: Bleeding complications in patients treated with maggot debridement therapy, Steenvoorde P and Oskam J, IJLEW 2005;4(1): 57–58. IntJLow ExtremWounds 4: 59.
|
[45] | Steffensen B, Hakkinen L, Larjava H (2001) Proteolytic events of wound-healing–coordinated interactions among matrix metalloproteinases (MMPs), integrins, and extracellular matrix molecules. Crit Rev Oral Biol Med 12: 373–398. doi: 10.1177/10454411010120050201
|
[46] | Chen WY, Rogers AA (2007) Recent insights into the causes of chronic leg ulceration in venous diseases and implications on other types of chronic wounds. WoundRepair Regen 15: 434–449. doi: 10.1111/j.1524-475x.2007.00250.x
|
[47] | Subramaniam K, Pech CM, Stacey MC, Wallace HJ (2008) Induction of MMP-1, MMP-3 and TIMP-1 in normal dermal fibroblasts by chronic venous leg ulcer wound fluid*. IntWoundJ 5: 79–86. doi: 10.1111/j.1742-481x.2007.00336.x
|
[48] | Whitney JD (2005) Overview: acute and chronic wounds. NursClinNorth Am 40: 191–205, v.
|
[49] | Kastl SP, Speidl WS, Kaun C, Rega G, Assadian A, et al. (2006) The complement component C5a induces the expression of plasminogen activator inhibitor-1 in human macrophages via NF-kappaB activation. JThrombHaemost 4: 1790–1797. doi: 10.1111/j.1538-7836.2006.02046.x
|
[50] | Skurk T, Hauner H (2004) Obesity and impaired fibrinolysis: role of adipose production of plasminogen activator inhibitor-1. IntJObesRelat Metab Disord 28: 1357–1364. doi: 10.1038/sj.ijo.0802778
|
[51] | Zollner TM, Veraart JC, Wolter M, Hesse S, Villemur B, et al. (1997) Leg ulcers in Klinefelter’s syndrome–further evidence for an involvement of plasminogen activator inhibitor-1. BrJDermatol 136: 341–344. doi: 10.1111/j.1365-2133.1997.tb14940.x
|
[52] | Lerant I, Kolev K, Gombas J, Machovich R (2000) Modulation of plasminogen activation and plasmin activity by methylglyoxal modification of the zymogen. BiochimBiophysActa 1480: 311–320. doi: 10.1016/s0167-4838(00)00083-2
|
[53] | Greiling D, Clark RA (1997) Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. JCell Sci 110 (Pt 7): 861–870.
|
[54] | Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, et al. (1996) Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87: 709–719. doi: 10.1016/s0092-8674(00)81390-2
|
[55] | Lund LR, Green KA, Stoop AA, Ploug M, Almholt K, et al. (2006) Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice. EMBO J 25: 2686–2697. doi: 10.1038/sj.emboj.7601173
|
[56] | Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, et al. (2003) Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. BrJDermatol 148: 14–23. doi: 10.1046/j.1365-2133.2003.04935.x
|