[1] | Bada JL (1982) Racemization of amino acids in nature. Interdiscipl Sci Rev 7: 30–46. doi: 10.1179/030801882789801304
|
[2] | Kimber RWL, Kennedy NM, Milnes AR (1994) Amino acid racemization dating of a 140000 year old tephra-loess-paleosol sequence on the Mamaku Plateau near Rotorua, New Zealand. Aust J Earth Sci 41: 19–26. doi: 10.1080/08120099408728109
|
[3] | Martinez-Rodríguez S, Martínez-Gómez AI, Rodríguez-Vico F, Clemente-Jiménez JM, Las Heras-Vazquez FJ (2010) Natural occurrence and industrial applications of D-amino acids: An overview. Chem Biodivers 7: 1531–1548. doi: 10.1002/cbdv.200900245
|
[4] | Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4: 147–181. doi: 10.1002/(sici)1099-1387(199805)4:3<147::aid-psc136>3.0.co;2-c
|
[5] | Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51: 553–563. doi: 10.1007/s002530051432
|
[6] | Rogers HJ (1974) Peptidoglycans (mucopeptides): structure, function, and variations. Ann NY Acad Sci 235: 29–51. doi: 10.1111/j.1749-6632.1974.tb43255.x
|
[7] | Nagata T, Meon B, Kirchman DL (2003) Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr 48: 745–754. doi: 10.4319/lo.2003.48.2.0745
|
[8] | Veuger B, van Oevelen D, Boschker HTS, Middelburg JJ (2006) Fate of peptidoglycan in an intertidal sediment: An in situ 13C-labeling study. Limnol Oceanogr 51: 1572–1580. doi: 10.4319/lo.2006.51.4.1572
|
[9] | Amelung W (2003) Nitrogen biomarkers and their fate in soil. J Plant Nutr Soil Sc 166: 677–686. doi: 10.1002/jpln.200321274
|
[10] | Bada JL, Hoopes EA (1979) Alanine enantiomeric ratio in the combined amino acid fraction in seawater. Nature 282: 822–823. doi: 10.1038/282822a0
|
[11] | Lee C, Bada JL (1977) Dissolved amino acids in equatorial Pacific, Sargasso Sea, and Biscayne Bay. Limnol Oceanogr 22: 502–510. doi: 10.4319/lo.1977.22.3.0502
|
[12] | Griffin CV, Kimber RWL (1988) Racemization of amino acids in agricultural soils: an age effect? Aust J Soil Res 26: 531–536. doi: 10.1071/sr9880531
|
[13] | Lomstein BA, J?rgensen BB, Schubert CJ, Niggemann J (2006) Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochim Cosmochim Ac 70: 2970–2989. doi: 10.1016/j.gca.2006.03.015
|
[14] | Pedersen AGU, Thomsen TR, Lomstein BA, J?rgensen NOG (2001) Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr 46: 1358–1369. doi: 10.4319/lo.2001.46.6.1358
|
[15] | McCarthy MD, Hedges JI, Benner R (1998) Major bacterial contribution to marine dissolved organic nitrogen. Science 281: 231–234. doi: 10.1126/science.281.5374.231
|
[16] | Brinton KLF, Tsapin AI, Gilichinsky D, McDonald GD (2002) Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost. Astrobiology 2: 77–82. doi: 10.1089/153110702753621358
|
[17] | Dittmar T, Fitznar HP, Kattner G (2001) Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochim Cosmochim Ac 65: 4103–4114. doi: 10.1016/s0016-7037(01)00688-3
|
[18] | Amelung W, Zhang X, Flach KW (2006) Amino acids in grassland soils: Climatic effects on concentrations and chirality. Geoderma 130: 207–217. doi: 10.1016/j.geoderma.2005.01.017
|
[19] | Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64: 1373–1394. doi: 10.1007/s00018-007-6558-4
|
[20] | D'Aniello A, D'Onofrio G, Pischetola M, D'Aniello G, Vetere A, et al. (1993) Biological role of D-amino acid oxidase and D-aspartate oxidase: Effects of D-amino acids. J Biol Chem 268: 26941–26949.
|
[21] | Gabler M, Fischer L (1999) Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum. Appl Environ Microbiol 65: 3750–3753.
|
[22] | LaRue TA, Spencer JFT (1967) The utilization of D-amino acids by yeasts. Can J Microbiol 13: 777–788. doi: 10.1139/m67-103
|
[23] | Takahashi S, Kakuichi T, Fujii K, Kera Y, Yamada RH (2005) Physiological role of D-aspartate oxidase in the assimilation and detoxification of D-aspartate in the yeast Cryptococcus humicola. Yeast 22: 1203–1212.
|
[24] | Yow GY, Uo T, Yoshimura T, Esaki N (2006) Physiological role of D-amino acid N-acetyltransferase of Saccharomyces cerevisiae: detoxification of D-amino acids. Arch Microbiol 185: 39–46. doi: 10.1007/s00203-005-0060-x
|
[25] | Yurimoto H, Hasegawa T, Sakai Y, Kato N (2000) Physiological role of the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii. Yeast 16: 1217–1227.
|
[26] | Aldag RW, Young JL (1970) D-amino acids in soils. I. uptake and metabolism by seedling maize and ryegrass. Agron J 62: 184–189. doi: 10.2134/agronj1970.00021962006200020002x
|
[27] | Forsum O, Svennerstam H, Ganeteg U, N?sholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179: 1058–1069. doi: 10.1111/j.1469-8137.2008.02546.x
|
[28] | Friedman M, Levin CE (2012) Nutritional value of D-amino acids, D-peptides, and amino acid derivatives in mice. Methods Mol Biol 794: 337–353. doi: 10.1007/978-1-61779-331-8_23
|
[29] | Moore BC, Leigh JA (2005) Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol 187: 972–979. doi: 10.1128/jb.187.3.972-979.2005
|
[30] | Uo T, Yoshimura T, Tanaka N, Takegawa K, Esaki N (2001) Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase. J Bacteriol 183: 2226–2233. doi: 10.1128/jb.183.7.2226-2233.2001
|
[31] | Wasserman SA, Walsh CT, Botstein D (1983) Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol 153: 1439–1450.
|
[32] | Yoshimura T, Esaki N (2003) Amino acid racemases: Functions and mechanisms. J Biosci Bioeng 96: 103–109. doi: 10.1263/jbb.96.103
|
[33] | Pucci MJ, Thanassi JA, Ho HT, Falk PJ, Dougherty TJ (1995) Staphylococcus haemolyticus contains two D-glutamic acid biosynthetic activities, a glutamate racemase and a D-amino acid transaminase. J Bacteriol 177: 336–342.
|
[34] | Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39: 704–708. doi: 10.1016/j.soilbio.2006.09.020
|
[35] | Vollmer AT, Au F, Bamberg SA (1977) Observations on the distribution of microorganisms in desert soil. Great Basin Nat 37: 81–86.
|
[36] | Smith HD, Duncan AG, Neary PL, Lloyd CR, Anderson AJ, et al. (2012) In situ microbial detection in Mojave Desert soil using native fluorescence. Astrobiology 12: 247–257. doi: 10.1089/ast.2010.0549
|
[37] | Perotti ME, Pollegioni L, Pilone MS (1991) Expression of D-amino acid oxidase in Rhodotorula gracilis under induction conditions: a biochemical and cytochemical study. Eur J Cell Biol 55: 104–113.
|
[38] | Sikora L, Marzluf GA (1982) Regulation of L-amino acid oxidase and of D-amino acid oxidase in Neurospora crassa. Mol Gen Genet 186: 33–39. doi: 10.1007/bf00422908
|
[39] | Simonetta MP, Verga R, Fretta A, Hanozet GM (1989) Induction of D-amino-acid oxidase by D-alanine in Rhodotorula gracilis grown in defined medium. J Gen Microbiol 135: 593–600. doi: 10.1099/00221287-135-3-593
|
[40] | Yurimoto H, Hasegawa T, Sakai Y, Kato N (2001) Characterization and high-level production of D-amino acid oxidase in Candida boidinii. Biosci Biotechnol Biochem 65: 627–633. doi: 10.1271/bbb.65.627
|
[41] | Zhao MX, Bada JL (1995) Determination of α-dialkylamino acids and their enantiomers in geological samples by high-performance liquid-chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. J Chromatogr 690: 55–63. doi: 10.1016/0021-9673(94)00927-2
|