全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Racemization in Reverse: Evidence that D-Amino Acid Toxicity on Earth Is Controlled by Bacteria with Racemases

DOI: 10.1371/journal.pone.0092101

Full-Text   Cite this paper   Add to My Lib

Abstract:

D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free.

References

[1]  Bada JL (1982) Racemization of amino acids in nature. Interdiscipl Sci Rev 7: 30–46. doi: 10.1179/030801882789801304
[2]  Kimber RWL, Kennedy NM, Milnes AR (1994) Amino acid racemization dating of a 140000 year old tephra-loess-paleosol sequence on the Mamaku Plateau near Rotorua, New Zealand. Aust J Earth Sci 41: 19–26. doi: 10.1080/08120099408728109
[3]  Martinez-Rodríguez S, Martínez-Gómez AI, Rodríguez-Vico F, Clemente-Jiménez JM, Las Heras-Vazquez FJ (2010) Natural occurrence and industrial applications of D-amino acids: An overview. Chem Biodivers 7: 1531–1548. doi: 10.1002/cbdv.200900245
[4]  Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4: 147–181. doi: 10.1002/(sici)1099-1387(199805)4:3<147::aid-psc136>3.0.co;2-c
[5]  Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51: 553–563. doi: 10.1007/s002530051432
[6]  Rogers HJ (1974) Peptidoglycans (mucopeptides): structure, function, and variations. Ann NY Acad Sci 235: 29–51. doi: 10.1111/j.1749-6632.1974.tb43255.x
[7]  Nagata T, Meon B, Kirchman DL (2003) Microbial degradation of peptidoglycan in seawater. Limnol Oceanogr 48: 745–754. doi: 10.4319/lo.2003.48.2.0745
[8]  Veuger B, van Oevelen D, Boschker HTS, Middelburg JJ (2006) Fate of peptidoglycan in an intertidal sediment: An in situ 13C-labeling study. Limnol Oceanogr 51: 1572–1580. doi: 10.4319/lo.2006.51.4.1572
[9]  Amelung W (2003) Nitrogen biomarkers and their fate in soil. J Plant Nutr Soil Sc 166: 677–686. doi: 10.1002/jpln.200321274
[10]  Bada JL, Hoopes EA (1979) Alanine enantiomeric ratio in the combined amino acid fraction in seawater. Nature 282: 822–823. doi: 10.1038/282822a0
[11]  Lee C, Bada JL (1977) Dissolved amino acids in equatorial Pacific, Sargasso Sea, and Biscayne Bay. Limnol Oceanogr 22: 502–510. doi: 10.4319/lo.1977.22.3.0502
[12]  Griffin CV, Kimber RWL (1988) Racemization of amino acids in agricultural soils: an age effect? Aust J Soil Res 26: 531–536. doi: 10.1071/sr9880531
[13]  Lomstein BA, J?rgensen BB, Schubert CJ, Niggemann J (2006) Amino acid biogeo- and stereochemistry in coastal Chilean sediments. Geochim Cosmochim Ac 70: 2970–2989. doi: 10.1016/j.gca.2006.03.015
[14]  Pedersen AGU, Thomsen TR, Lomstein BA, J?rgensen NOG (2001) Bacterial influence on amino acid enantiomerization in a coastal marine sediment. Limnol Oceanogr 46: 1358–1369. doi: 10.4319/lo.2001.46.6.1358
[15]  McCarthy MD, Hedges JI, Benner R (1998) Major bacterial contribution to marine dissolved organic nitrogen. Science 281: 231–234. doi: 10.1126/science.281.5374.231
[16]  Brinton KLF, Tsapin AI, Gilichinsky D, McDonald GD (2002) Aspartic acid racemization and age-depth relationships for organic carbon in Siberian permafrost. Astrobiology 2: 77–82. doi: 10.1089/153110702753621358
[17]  Dittmar T, Fitznar HP, Kattner G (2001) Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochim Cosmochim Ac 65: 4103–4114. doi: 10.1016/s0016-7037(01)00688-3
[18]  Amelung W, Zhang X, Flach KW (2006) Amino acids in grassland soils: Climatic effects on concentrations and chirality. Geoderma 130: 207–217. doi: 10.1016/j.geoderma.2005.01.017
[19]  Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G (2007) Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64: 1373–1394. doi: 10.1007/s00018-007-6558-4
[20]  D'Aniello A, D'Onofrio G, Pischetola M, D'Aniello G, Vetere A, et al. (1993) Biological role of D-amino acid oxidase and D-aspartate oxidase: Effects of D-amino acids. J Biol Chem 268: 26941–26949.
[21]  Gabler M, Fischer L (1999) Production of a new D-amino acid oxidase from the fungus Fusarium oxysporum. Appl Environ Microbiol 65: 3750–3753.
[22]  LaRue TA, Spencer JFT (1967) The utilization of D-amino acids by yeasts. Can J Microbiol 13: 777–788. doi: 10.1139/m67-103
[23]  Takahashi S, Kakuichi T, Fujii K, Kera Y, Yamada RH (2005) Physiological role of D-aspartate oxidase in the assimilation and detoxification of D-aspartate in the yeast Cryptococcus humicola. Yeast 22: 1203–1212.
[24]  Yow GY, Uo T, Yoshimura T, Esaki N (2006) Physiological role of D-amino acid N-acetyltransferase of Saccharomyces cerevisiae: detoxification of D-amino acids. Arch Microbiol 185: 39–46. doi: 10.1007/s00203-005-0060-x
[25]  Yurimoto H, Hasegawa T, Sakai Y, Kato N (2000) Physiological role of the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii. Yeast 16: 1217–1227.
[26]  Aldag RW, Young JL (1970) D-amino acids in soils. I. uptake and metabolism by seedling maize and ryegrass. Agron J 62: 184–189. doi: 10.2134/agronj1970.00021962006200020002x
[27]  Forsum O, Svennerstam H, Ganeteg U, N?sholm T (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179: 1058–1069. doi: 10.1111/j.1469-8137.2008.02546.x
[28]  Friedman M, Levin CE (2012) Nutritional value of D-amino acids, D-peptides, and amino acid derivatives in mice. Methods Mol Biol 794: 337–353. doi: 10.1007/978-1-61779-331-8_23
[29]  Moore BC, Leigh JA (2005) Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease. J Bacteriol 187: 972–979. doi: 10.1128/jb.187.3.972-979.2005
[30]  Uo T, Yoshimura T, Tanaka N, Takegawa K, Esaki N (2001) Functional characterization of alanine racemase from Schizosaccharomyces pombe: a eucaryotic counterpart to bacterial alanine racemase. J Bacteriol 183: 2226–2233. doi: 10.1128/jb.183.7.2226-2233.2001
[31]  Wasserman SA, Walsh CT, Botstein D (1983) Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol 153: 1439–1450.
[32]  Yoshimura T, Esaki N (2003) Amino acid racemases: Functions and mechanisms. J Biosci Bioeng 96: 103–109. doi: 10.1263/jbb.96.103
[33]  Pucci MJ, Thanassi JA, Ho HT, Falk PJ, Dougherty TJ (1995) Staphylococcus haemolyticus contains two D-glutamic acid biosynthetic activities, a glutamate racemase and a D-amino acid transaminase. J Bacteriol 177: 336–342.
[34]  Lester ED, Satomi M, Ponce A (2007) Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39: 704–708. doi: 10.1016/j.soilbio.2006.09.020
[35]  Vollmer AT, Au F, Bamberg SA (1977) Observations on the distribution of microorganisms in desert soil. Great Basin Nat 37: 81–86.
[36]  Smith HD, Duncan AG, Neary PL, Lloyd CR, Anderson AJ, et al. (2012) In situ microbial detection in Mojave Desert soil using native fluorescence. Astrobiology 12: 247–257. doi: 10.1089/ast.2010.0549
[37]  Perotti ME, Pollegioni L, Pilone MS (1991) Expression of D-amino acid oxidase in Rhodotorula gracilis under induction conditions: a biochemical and cytochemical study. Eur J Cell Biol 55: 104–113.
[38]  Sikora L, Marzluf GA (1982) Regulation of L-amino acid oxidase and of D-amino acid oxidase in Neurospora crassa. Mol Gen Genet 186: 33–39. doi: 10.1007/bf00422908
[39]  Simonetta MP, Verga R, Fretta A, Hanozet GM (1989) Induction of D-amino-acid oxidase by D-alanine in Rhodotorula gracilis grown in defined medium. J Gen Microbiol 135: 593–600. doi: 10.1099/00221287-135-3-593
[40]  Yurimoto H, Hasegawa T, Sakai Y, Kato N (2001) Characterization and high-level production of D-amino acid oxidase in Candida boidinii. Biosci Biotechnol Biochem 65: 627–633. doi: 10.1271/bbb.65.627
[41]  Zhao MX, Bada JL (1995) Determination of α-dialkylamino acids and their enantiomers in geological samples by high-performance liquid-chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. J Chromatogr 690: 55–63. doi: 10.1016/0021-9673(94)00927-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133