全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

A Partial Gene Deletion of SLC45A2 Causes Oculocutaneous Albinism in Doberman Pinscher Dogs

DOI: 10.1371/journal.pone.0092127

Full-Text   Cite this paper   Add to My Lib

Abstract:

The first white Doberman pinscher (WDP) dog was registered by the American Kennel Club in 1976. The novelty of the white coat color resulted in extensive line breeding of this dog and her offspring. The WDP phenotype closely resembles human oculocutaneous albinism (OCA) and clinicians noticed a seemingly high prevalence of pigmented masses on these dogs. This study had three specific aims: (1) produce a detailed description of the ocular phenotype of WDPs, (2) objectively determine if an increased prevalence of ocular and cutaneous melanocytic tumors was present in WDPs, and (3) determine if a genetic mutation in any of the genes known to cause human OCA is causal for the WDP phenotype. WDPs have a consistent ocular phenotype of photophobia, hypopigmented adnexal structures, blue irides with a tan periphery and hypopigmented retinal pigment epithelium and choroid. WDPs have a higher prevalence of cutaneous melanocytic neoplasms compared with control standard color Doberman pinschers (SDPs); cutaneous tumors were noted in 12/20 WDP (<5 years of age: 4/12; >5 years of age: 8/8) and 1/20 SDPs (p<0.00001). Using exclusion analysis, four OCA causative genes were investigated for their association with WDP phenotype; TYR, OCA2, TYRP1 and SLC45A2. SLC45A2 was found to be linked to the phenotype and gene sequencing revealed a 4,081 base pair deletion resulting in loss of the terminus of exon seven of SLC45A2 (chr4:77,062,968–77,067,051). This mutation is highly likely to be the cause of the WDP phenotype and is supported by a lack of detectable SLC45A2 transcript levels by reverse transcriptase PCR. The WDP provides a valuable model for studying OCA4 visual disturbances and melanocytic neoplasms in a large animal model.

References

[1]  Schmutz SM, Berryere TG (2007) Genes affecting coat colour and pattern in domestic dogs: a review. Anim Genet 38: 539–549. doi: 10.1111/j.1365-2052.2007.01664.x
[2]  Rak SG, Distl O (2005) Congenital sensorineural deafness in dogs: a molecular genetic approach toward unravelling the responsible genes. Vet J 169: 188–196. doi: 10.1016/j.tvjl.2004.01.015
[3]  Strain GM, Clark LA, Wahl JM, Turner AE, Murphy KE (2009) Prevalence of deafness in dogs heterozygous or homozygous for the merle allele. J Vet Intern Med 23: 282–286. doi: 10.1111/j.1939-1676.2008.0257.x
[4]  Stritzel S, Wohlke A, Distl O (2009) A role of the microphthalmia-associated transcription factor in congenital sensorineural deafness and eye pigmentation in Dalmatian dogs. J Anim Breed Genet 126: 59–62. doi: 10.1111/j.1439-0388.2008.00761.x
[5]  Clark LA, Tsai KL, Starr AN, Nowend KL, Murphy KE (2011) A missense mutation in the 20S proteasome beta2 subunit of Great Danes having harlequin coat patterning. Genomics 97: 244–248. doi: 10.1016/j.ygeno.2011.01.003
[6]  Tachibana M (1999) Sound needs sound melanocytes to be heard. Pigment Cell Res 12: 344–354. doi: 10.1111/j.1600-0749.1999.tb00518.x
[7]  Cable J, Barkway C, Steel KP (1992) Characteristics of stria vascularis melanocytes of viable dominant spotting (Wv/Wv) mouse mutants. Hear Res 64: 6–20. doi: 10.1016/0378-5955(92)90164-i
[8]  Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 107: 453–463. doi: 10.1016/0168-9525(90)90041-4
[9]  Jin Z, Mannstrom P, Jarlebark L, Ulfendahl M (2007) Malformation of stria vascularis in the developing inner ear of the German waltzing guinea pig. Cell Tissue Res 328: 257–270. doi: 10.1007/s00441-006-0369-z
[10]  Pingault V, Ente D, Dastot-Le Moal F, Goossens M, Marlin S, et al. (2010) Review and update of mutations causing Waardenburg syndrome. Hum Mutat 31: 391–406. doi: 10.1002/humu.21211
[11]  Simeonov DR, Wang X, Wang C, Sergeev Y, Dolinska M, et al. (2013) DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics. Hum Mutat 34: 827–835. doi: 10.1002/humu.22315
[12]  Montoliu L, Gronskov K, Wei AH, Martinez-Garcia M, Fernandez A, et al.. (2013) Increasing the complexity: new genes and new types of albinism. Pigment Cell Melanoma Res.
[13]  Winkler PA, Ekenstedt KJ, Occelli LM, Frattaroli AV, Bartoe JT, et al. (2013) A Large Animal Model for CNGB1 Autosomal Recessive Retinitis Pigmentosa. PLoS One 8: e72229. doi: 10.1371/journal.pone.0072229
[14]  Winkler PA, Bartoe JT, Quinones CR, Venta PJ, Petersen-Jones SM (2013) Exclusion of eleven candidate genes for ocular melanosis in Cairn terriers. J Negat Results Biomed 12: 6. doi: 10.1186/1477-5751-12-6
[15]  Neilan BA, Wilton AN, Jacobs D (1997) A universal procedure for primer labelling of amplicons. Nucleic Acids Res 25: 2938–2939. doi: 10.1093/nar/25.14.2938
[16]  Sun JX, Helgason A, Masson G, Ebenesersdottir SS, Li H, et al. (2012) A direct characterization of human mutation based on microsatellites. Nat Genet 44: 1161–1165. doi: 10.1038/ng.2398
[17]  Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. (2010) A method and server for predicting damaging missense mutations. Nat Methods 7: 248–249. doi: 10.1038/nmeth0410-248
[18]  King RA, Oetting WS, Creel DJ, Hearing V (1997) Abnormalities of pigmentation. In: David L. Rimoin JMC, Reed E Pyeritz, editor. Emery and Rimoin’s Principles and Practice of Medical Genetics. 3 ed. New York, NY: Churchill Livingston. 1171–1203.
[19]  Wolf AB, Rubin SE, Kodsi SR (2005) Comparison of clinical findings in pediatric patients with albinism and different amplitudes of nystagmus. J AAPOS 9: 363–368. doi: 10.1016/j.jaapos.2005.03.003
[20]  Kumar A, Gottlob I, McLean RJ, Thomas S, Thomas MG, et al. (2011) Clinical and oculomotor characteristics of albinism compared to FRMD7 associated infantile nystagmus. Invest Ophthalmol Vis Sci 52: 2306–2313. doi: 10.1167/iovs.10-5685
[21]  Chong GT, Farsiu S, Freedman SF, Sarin N, Koreishi AF, et al. (2009) Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol 127: 37–44. doi: 10.1001/archophthalmol.2008.550
[22]  Russell-Eggitt I, Kriss A, Taylor DS (1990) Albinism in childhood: a flash VEP and ERG study. Br J Ophthalmol 74: 136–140. doi: 10.1136/bjo.74.3.136
[23]  Mabula JB, Chalya PL, McHembe MD, Jaka H, Giiti G, et al. (2012) Skin cancers among Albinos at a University teaching hospital in Northwestern Tanzania: a retrospective review of 64 cases. BMC Dermatol 12: 5. doi: 10.1186/1471-5945-12-5
[24]  Opara KO, Jiburum BC (2010) Skin cancers in albinos in a teaching Hospital in eastern Nigeria - presentation and challenges of care. World J Surg Oncol 8: 73. doi: 10.1186/1477-7819-8-73
[25]  Lookingbill DP, Lookingbill GL, Leppard B (1995) Actinic damage and skin cancer in albinos in northern Tanzania: findings in 164 patients enrolled in an outreach skin care program. J Am Acad Dermatol 32: 653–658. doi: 10.1016/0190-9622(95)90352-6
[26]  Fernandez LP, Milne RL, Pita G, Aviles JA, Lazaro P, et al. (2008) SLC45A2: a novel malignant melanoma-associated gene. Hum Mutat 29: 1161–1167. doi: 10.1002/humu.20804
[27]  Ibarrola-Villava M, Fernandez LP, Alonso S, Boyano MD, Pena-Chilet M, et al. (2011) A customized pigmentation SNP array identifies a novel SNP associated with melanoma predisposition in the SLC45A2 gene. PLoS One 6: e19271. doi: 10.1371/journal.pone.0019271
[28]  Guedj M, Bourillon A, Combadieres C, Rodero M, Dieude P, et al. (2008) Variants of the MATP/SLC45A2 gene are protective for melanoma in the French population. Hum Mutat 29: 1154–1160. doi: 10.1002/humu.20823
[29]  Duffy DL, Zhao ZZ, Sturm RA, Hayward NK, Martin NG, et al. (2010) Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J Invest Dermatol 130: 520–528. doi: 10.1038/jid.2009.258
[30]  Christophers AJ (1998) Melanoma is not caused by sunlight. Mutat Res 422: 113–117. doi: 10.1016/s0027-5107(98)00182-1
[31]  Mitra D, Luo X, Morgan A, Wang J, Hoang MP, et al. (2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491: 449–453. doi: 10.1038/nature11624
[32]  Juzeniene A, Baturaite Z, Moan J (2013) Sun exposure and melanomas on sun-shielded and sun-exposed body areas. In: Reichrath J, editor. Sunlight, vitamin D and skin cancer. 2nd ed. Austin, Texas, USA: Landes Bioscience and Springer. 1–15.
[33]  Schmutz SM, Berryere TG (2007) The genetics of cream coat color in dogs. J Hered 98: 544–548. doi: 10.1093/jhered/esm018
[34]  Vitavska O, Wieczorek H (2013) The SLC45 gene family of putative sugar transporters. Mol Aspects Med 34: 655–660. doi: 10.1016/j.mam.2012.05.014
[35]  Dooley CM, Schwarz H, Mueller KP, Mongera A, Konantz M, et al. (2013) Slc45a2 and V-ATPase are regulators of melanosomal pH homeostasis in zebrafish, providing a mechanism for human pigment evolution and disease. Pigment Cell Melanoma Res 26: 205–217. doi: 10.1111/pcmr.12053
[36]  Graf J, Voisey J, Hughes I, van Daal A (2007) Promoter polymorphisms in the MATP (SLC45A2) gene are associated with normal human skin color variation. Hum Mutat 28: 710–717. doi: 10.1002/humu.20504
[37]  Xu X, Dong GX, Hu XS, Miao L, Zhang XL, et al. (2013) The genetic basis of white tigers. Curr Biol 23: 1031–1035. doi: 10.1016/j.cub.2013.04.054
[38]  Mariat D, Taourit S, Guerin G (2003) A mutation in the MATP gene causes the cream coat colour in the horse. Genet Sel Evol 35: 119–133. doi: 10.1186/1297-9686-35-1-119
[39]  Prado-Martinez J, Hernando-Herraez I, Lorente-Galdos B, Dabad M, Ramirez O, et al. (2013) The genome sequencing of an albino Western lowland gorilla reveals inbreeding in the wild. BMC Genomics 14: 363. doi: 10.1186/1471-2164-14-363
[40]  Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT, et al. (2001) Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4. Am J Hum Genet 69: 981–988. doi: 10.1086/324340
[41]  Du J, Fisher DE (2002) Identification of Aim-1 as the underwhite mouse mutant and its transcriptional regulation by MITF. J Biol Chem 277: 402–406. doi: 10.1074/jbc.m110229200
[42]  Inagaki K, Suzuki T, Shimizu H, Ishii N, Umezawa Y, et al. (2004) Oculocutaneous albinism type 4 is one of the most common types of albinism in Japan. Am J Hum Genet 74: 466–471. doi: 10.1086/382195
[43]  Rundshagen U, Zuhlke C, Opitz S, Schwinger E, Kasmann-Kellner B (2004) Mutations in the MATP gene in five German patients affected by oculocutaneous albinism type 4. Hum Mutat 23: 106–110. doi: 10.1002/humu.10311
[44]  Schoenberg DR, Maquat LE (2012) Regulation of cytoplasmic mRNA decay. Nat Rev Genet 13: 246–259. doi: 10.1038/nrg3160
[45]  Hogg JR, Goff SP (2010) Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143: 379–389. doi: 10.1016/j.cell.2010.10.005
[46]  Rooryck C, Morice-Picard F, Elcioglu NH, Lacombe D, Taieb A, et al. (2008) Molecular diagnosis of oculocutaneous albinism: new mutations in the OCA1-4 genes and practical aspects. Pigment Cell Melanoma Res 21: 583–587. doi: 10.1111/j.1755-148x.2008.00496.x
[47]  Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molec Biol Evol 27: 221–224. doi: 10.1093/molbev/msp259

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133