全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Pherotype Influences Biofilm Growth and Recombination in Streptococcus pneumoniae

DOI: 10.1371/journal.pone.0092138

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Streptococcus pneumoniae the competence-stimulating peptide (CSP), encoded by the comC gene, controls competence development and influences biofilm growth. We explored the influence of pherotype, defined by the two major comC allelic variants (comC1 and comC2), on biofilm development and recombination efficiency. Among isolates recovered from human infections those presenting comC1 show a higher capacity to form in vitro biofilms. The influence of pherotype on biofilm growth was confirmed by experiments with isogenic strains differing in their comC alleles. Biofilm architecture evaluated by confocal laser scanning microscopy showed that strains carrying comC1 form biofilms that are denser and thicker than those carrying the comC2 allele. Isogenic strains carrying the comC1 allele yielded more transformants than those carrying the comC2 allele in both planktonic and biofilm growth. Transformation assays with comC knockout strains show that ComD1 needs lower doses of the signaling peptide to reach the same biological outcomes. In contrast to mixed planktonic growth, within mixed biofilms inter-pherotype genetic exchange is less frequent than that occurring between bacteria of the same pherotype. Since biofilms are a major bacterial lifestyle, these observations may explain the genetic differentiation between populations with different pherotypes reported previously. Considering that biofilms have been associated with colonization our results suggest that strains carrying the comC1 allele may be more transmissible and more efficient at persisting in carriage. Both effects may help explain the higher prevalence of the comC1 allele in the pneumococcal population.

References

[1]  Anderson GG, O'Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. In: Romeo T, editor. Bacterial Biofilms. Current topics in microbiology and immunology. Vol. 322. pp. 85–105. Available: http://link.springer.com/book/10.1007/97?8-3-540-75418-3.
[2]  Johnsborg O, Eldholm V, Bj?rnstad ML, H?varstein LS (2008) A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol Microbiol 69: 245–253 doi:10.1111/j.1365-2958.2008.06288.x.
[3]  Domenech M, Ramos-Sevillano E, García E, Moscoso M, Yuste J (2013) Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun 81: 2606–2615 doi:10.1128/IAI.00491-13.
[4]  Marks LR, Parameswaran GI, Hakansson AP (2012) Pneumococcal interactions with epithelial cells are crucial for optimal biofilm formation and colonization in vitro and in vivo. Infect Immun 80: 2744–2760 doi:10.1128/IAI.00488-12.
[5]  Tikhomirova A, Kidd SP (2013) Haemophilus influenzae and Streptococcus pneumoniae: living together in a biofilm. Pathog Dis 69: 114–126 doi:10.1111/2049-632X.12073.
[6]  Neil RB, Shao JQ, Apicella MA (2009) Biofilm formation on human airway epithelia by encapsulated Neisseria meningitidis serogroup B. Microbes Infect 11: 281–287 doi:10.1016/j.micinf.2008.12.001.
[7]  Cook LC, Federle MJ (2013) Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev In press. doi:10.1111/1574-6976.12046.
[8]  H?varstein LS, Coomaraswamy G, Morrison DA (1995) An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A 92: 11140–11144. doi: 10.1073/pnas.92.24.11140
[9]  Tomasz A (1965) Control of competent state in pneumococcus by a hormone-like cell product: An example for a new type of regulatory mechanism in bacteria. Nature 208: 155–159. doi: 10.1038/208155a0
[10]  Claverys JP, Havarstein LS (2007) Cannibalism and fratricide: mechanisms and raisons d'être. Nat Rev Microbiol 5: 219–229 doi:10.1038/nrmicro1613.
[11]  Peterson SN, Sung CK, Cline R, Desai BV, Snesrud EC, et al. (2004) Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol 51: 1051–1070. doi: 10.1046/j.1365-2958.2003.03907.x
[12]  Steinmoen H, Knutsen E, H?varstein LS (2002) Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A 99: 7681–7686 doi:10.1073/pnas.112464599.
[13]  Berg KH, Bi?rnstad TJ, Johnsborg O, H?varstein LS (2012) Properties and biological role of streptococcal fratricins. Appl Environ Microbiol 78: 3515–3522 doi:10.1128/AEM.00098-12.
[14]  Pozzi G, Masala L, Iannelli F, Manganelli R, Havarstein LS, et al. (1996) Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae - Two allelic variants of the peptide pheromone. J Bacteriol 178: 6087–6090.
[15]  Ramirez M, Morrison DA, Tomasz A (1997) Ubiquitous distribution of the competence related genes comA and comC among isolates of Streptococcus pneumoniae. Microb Drug Resist 3: 39–52. doi: 10.1089/mdr.1997.3.39
[16]  Carrolo M, Pinto FR, Melo-Cristino J, Ramirez M (2009) Pherotypes are driving genetic differentiation within Streptococcus pneumoniae. BMC Microbiol 9: 191 doi:10.1186/1471-2180-9-191.
[17]  Valente C, De Lencastre H, Sá-Le?o R (2012) Pherotypes of co-colonizing pneumococci among portuguese children. Microb Drug Resist 18: 550–554 doi:10.1089/mdr.2011.0228.
[18]  Vestrheim DF, Gaustad P, Aaberge IS, Caugant DA (2011) Pherotypes of pneumococcal strains co-existing in healthy children. Infect Genet Evol 11: 1703–1708 doi:10.1016/j.meegid.2011.07.003.
[19]  Brugger SD, Frey P, Aebi S, Hinds J, Mühlemann K (2010) Multiple colonization with S. pneumoniae before and after introduction of the seven-valent conjugated pneumococcal polysaccharide vaccine. PloS One 5: e11638 doi:10.1371/journal.pone.0011638.
[20]  Claverys J-P, Prudhomme M, Martin B (2006) Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu Rev Microbiol 60: 451–475 doi:10.1146/annurev.micro.60.080805.142139.
[21]  Cornejo OE, McGee L, Rozen DE (2010) Polymorphic competence peptides do not restrict recombination in Streptococcus pneumoniae. Mol Biol Evol 27: 694–702 doi:10.1093/molbev/msp287.
[22]  H?varstein LS, Hakenbeck R, Gaustad P (1997) Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179: 6589–6594.
[23]  Tortosa P, Dubnau D (1999) Competence for transformation: a matter of taste. Curr Opin Microbiol 2: 588–592. doi: 10.1016/s1369-5274(99)00026-0
[24]  Suntharalingam P, Cvitkovitch DG (2005) Quorum sensing in streptococcal biofilm formation. Trends Microbiol 13: 3–6 doi:10.1016/j.tim.2004.11.009.
[25]  Petersen FC, Pecharki D, Scheie AA (2004) Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J Bacteriol 186: 6327–6331 doi:10.1128/JB.186.18.6327-6331.2004.
[26]  Li Y-H, Tang N, Aspiras MB, Lau PCY, Lee JH, et al. (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol 184: 2699–2708. doi: 10.1128/jb.184.10.2699-2708.2002
[27]  Loo CY, Corliss DA, Ganeshkumar N (2000) Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol 182: 1374–1382. doi: 10.1128/jb.182.5.1374-1382.2000
[28]  Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, et al. (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61: 1196–1210 doi:10.1111/j.1365-2958.2006.05310.x.
[29]  Trappetti C, Potter AJ, Paton AW, Oggioni MR, Paton JC (2011) Luxs mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infect Immun 79: 4550–4558 doi:10.1128/IAI.05644-11.
[30]  Morrison DA, Lacks SA, Guild WR, Hageman JM (1983) Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J Bacteriol 156: 281–290.
[31]  Lacks S, Hotchkiss RD (1960) A study of the genetic material determining an enzyme activity in penumococcus. Biochim Biophys Acta 39: 508–517. doi: 10.1016/0006-3002(60)90205-5
[32]  Piotrowski A, Luo P, Morrison DA (2009) Competence for genetic transformation in Streptococcus pneumoniae: termination of activity of the alternative sigma factor ComX is independent of proteolysis of ComX and ComW. J Bacteriol 191: 3359–3366 doi:10.1128/JB.01750-08.
[33]  Moscoso M, García E, López R (2006) Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J Bacteriol 188: 7785–7795 doi:10.1128/JB.00673-06.
[34]  Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53: 1204–1209 doi:10.1128/AAC.00471-08.
[35]  Halfmann A, Hakenbeck R, Brückner R (2007) A new integrative reporter plasmid for Streptococcus pneumoniae. FEMS Microbiol Lett 268: 217–224 doi:10.1111/j.1574-6968.2006.00584.x.
[36]  Aguiar SI, Serrano I, Pinto FR, Melo-Cristino J, Ramirez M (2008) The presence of the pilus locus is a clonal property among pneumococcal invasive isolates. BMC Microbiol 8: 41 doi:10.1186/1471-2180-8-41.
[37]  Serrano I, Melo-Cristino J, Carri?o JA, Ramirez M (2005) Characterization of the genetic lineages responsible for pneumococcal invasive disease in Portugal. J Clin Microbiol 43: 1706–1715 doi:10.1128/JCM.43.4.1706-1715.2005.
[38]  Iannelli F, Oggioni MR, Pozzi G (2005) Sensor domain of histidine kinase ComD confers competence pherotype specificity in Streptoccoccus pneumoniae. FEMS Microbiol Lett 252: 321–326 doi:10.1016/j.femsle.2005.09.008.
[39]  Claverys J-P, Martin B, H?varstein LS (2007) Competence-induced fratricide in streptococci. Mol Microbiol 64: 1423–1433 doi:10.1111/j.1365-2958.2007.05757.x.
[40]  Guiral S, Mitchell TJ, Martin B, Claverys J-P (2005) Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci U S A 102: 8710–8715 doi:10.1073/pnas.0500879102.
[41]  H?varstein LS, Martin B, Johnsborg O, Granadel C, Claverys J-P (2006) New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol 59: 1297–1307 doi:10.1111/j.1365-2958.2005.05021.x.
[42]  Carrolo M, Frias MJ, Pinto FR, Melo-Cristino J, Ramirez M (2010) Prophage spontaneous activation promotes DNA release enhancing biofilm formation in Streptococcus pneumoniae. PloS One 5: e15678 doi:10.1371/journal.pone.0015678.
[43]  Perry JA, Cvitkovitch DG, Lévesque CM (2009) Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol Lett 299: 261–266 doi:10.1111/j.1574-6968.2009.01758.x.
[44]  Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, et al. (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol 72: 1022–1036 doi:10.1111/j.1365-2958.2009.06703.x.
[45]  Evans BA, Rozen DE (2013) Significant variation in transformation frequency in Streptococcus pneumoniae. ISME J 7: 791–799 doi:10.1038/ismej.2012.170.
[46]  Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, et al. (2011) Rapid pneumococcal evolution in response to clinical interventions. Science 331: 430–434 doi:10.1126/science.1198545.
[47]  Marks LR, Reddinger RM, Hakansson AP (2012) High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 3. doi:10.1128/mBio.00200-12.
[48]  Feil EJ, Smith JM, Enright MC, Spratt BG (2000) Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics 154: 1439–1450.
[49]  Wei H, H?varstein LS (2012) Fratricide is essential for efficient gene transfer between pneumococci in biofilms. Appl Environ Microbiol 78: 5897–5905 doi:10.1128/AEM.01343-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133