全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Up-Regulation of the ATP-Binding Cassette Transporter A1 Inhibits Hepatitis C Virus Infection

DOI: 10.1371/journal.pone.0092140

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatitis C virus (HCV) establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1) mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes. Furthermore, it generates high-density lipoprotein (HDL) particles. HDL protects against arteriosclerosis and cardiovascular disease. We show that the up-regulation of ABCA1 gene expression and its cholesterol efflux function in Huh7.5 hepatoma cells, using the liver X receptor (LXR) agonist GW3965, impairs HCV infection and decreases levels of virus produced. ABCA1-stimulation inhibited HCV cell entry, acting on virus-host cell fusion, but had no impact on virus attachment, replication, or assembly/secretion. It did not affect infectivity or properties of virus particles produced. Silencing of the ABCA1 gene and reduction of the specific cholesterol efflux function counteracted the inhibitory effect of the GW3965 on HCV infection, providing evidence for a key role of ABCA1 in this process. Impaired virus-cell entry correlated with the reorganisation of cholesterol-rich membrane microdomains (lipid rafts). The inhibitory effect could be reversed by an exogenous cholesterol supply, indicating that restriction of HCV infection was induced by changes of cholesterol content/distribution in membrane regions essential for virus-cell fusion. Stimulation of ABCA1 expression by GW3965 inhibited HCV infection of both human primary hepatocytes and isolated human liver slices. This study reveals that pharmacological stimulation of the ABCA1-dependent cholesterol efflux pathway disrupts membrane cholesterol homeostasis, leading to the inhibition of virus–cell fusion and thus HCV cell entry. Therefore besides other beneficial roles, ABCA1 might represent a potential target for HCV therapy.

References

[1]  Lange CM, Jacobson IM, Rice CM, Zeuzem S (2014) Emerging therapies for the treatment of hepatitis C. EMBO Mol Med. 6: 4–15. doi: 10.1002/emmm.201303131
[2]  Asselah T, Marcellin P (2012) Direct acting antivirals for the treatment of chronic hepatitis C: one pill a day for tomorrow. Liver International 32: 88–102. doi: 10.1111/j.1478-3231.2011.02699.x
[3]  Buhler S, Bartenschlager R (2012) New targets for antiviral therapy of chronic hepatitis C. Liver Int. 32 Suppl 19–16. doi: 10.1111/j.1478-3231.2011.02701.x
[4]  Bartenschlager R, Cosset FL, Lohmann V (2010) Hepatitis C virus replication cycle. J Hepatol 53: 583–585. doi: 10.1016/j.jhep.2010.04.015
[5]  Ye J (2007) Reliance of host cholesterol metabolic pathways for the life cycle of hepatitis C virus. PLoS Pathog 3: e108. doi: 10.1371/journal.ppat.0030108
[6]  Syed GH, Amako Y, Siddiqui A (2010) Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab 21: 33–40. doi: 10.1016/j.tem.2009.07.005
[7]  Bassendine MF, Sheridan DA, Bridge SH, Felmlee DJ, Neely RD (2013) Lipids and HCV. Semin Immunopathol 35: 87–100. doi: 10.1007/s00281-012-0356-2
[8]  Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX (1999) Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Nat Acad Sci U S A 96: 12766–12771. doi: 10.1073/pnas.96.22.12766
[9]  Maillard P, Huby T, Andreo U, Moreau M, Chapman J, et al. (2006) The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins. Faseb J 20: 735–737. doi: 10.1096/fj.05-4728fje
[10]  Burlone ME, Budkowska A (2009) Hepatitis C virus-cell entry: role of lipoproteins and cellular receptors. J Gen Virol 90: 1055–1070. doi: 10.1099/vir.0.008300-0
[11]  Kapadia SB, Chisari FV (2005) Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc Natl Acad Sci U S A 102: 2561–2566. doi: 10.1073/pnas.0409834102
[12]  Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, et al. (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9: 1089–1097. doi: 10.1038/ncb1631
[13]  Huang H, Sun F, Owen DM, Li W, Chen Y, et al. (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 104: 5848–5853. doi: 10.1073/pnas.0700760104
[14]  Chang KS, Jiang J, Cai Z, Luo G (2007) Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J Virol 81: 13783–13793. doi: 10.1128/jvi.01091-07
[15]  Andre P, Komurian-Pradel F, Deforges S, Perret M, Berland JL, et al. (2002) Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 76: 6919–6928. doi: 10.1128/jvi.76.14.6919-6928.2002
[16]  Nielsen SU, Bassendine MF, Burt AD, Martin C, Pumeechockchai W, et al. (2006) Association between hepatitis C virus and very-low-density lipoprotein (VLDL)/LDL analyzed in iodixanol density gradients. J Virol 80: 2418–2428. doi: 10.1128/jvi.80.5.2418-2428.2006
[17]  Blackham S, Baillie A, Al-Hababi F, Remlinger K, You S, et al. (2010) Gene expression profiling indicates the roles of host oxidative stress, apoptosis, lipid metabolism, and intracellular transport genes in the replication of hepatitis C virus. J Virol 84: 5404–5414. doi: 10.1128/jvi.02529-09
[18]  Negro F (2010) Abnormalities of lipid metabolism in hepatitis C virus infection. Gut 59: 1279–1287. doi: 10.1136/gut.2009.192732
[19]  Ramcharran D, Wahed AS, Conjeevaram HS, Evans RW, Wang T, et al. (2011) Serum lipids and their associations with viral levels and liver disease severity in a treatment-naive chronic hepatitis C type 1-infected cohort. J Viral Hepat 18: e144–152. doi: 10.1111/j.1365-2893.2010.01394.x
[20]  Bassendine MF, Sheridan DA, Felmlee DJ, Bridge SH, Toms GL, et al. (2011) HCV and the hepatic lipid pathway as a potential treatment target. J Hepatol 55: 1482–1440. doi: 10.1016/j.jhep.2011.06.004
[21]  Amemiya F, Maekawa S, Itakura Y, Kanayama A, Matsui A, et al. (2008) Targeting lipid metabolism in the treatment of hepatitis C virus infection. J Infect Dis 197: 361–370. doi: 10.1086/525287
[22]  Kapadia SB, Barth H, Baumert T, McKeating JA, Chisari FV (2007) Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J Virol. 81: 374–383. doi: 10.1128/jvi.01134-06
[23]  Chamoun-Emanuelli AM, Pecheur EI, Simeon RL, Huang D, Cremer PS, et al. (2013) Phenothiazines inhibit hepatitis C virus entry, likely by increasing the fluidity of cholesterol-rich membranes. Antimic agents chemo 57: 2571–2581. doi: 10.1128/aac.02593-12
[24]  Shelness GS, Sellers JA (2001) Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 12: 151–157. doi: 10.1097/00041433-200104000-00008
[25]  Oram JF, Heinecke JW (2005) ATP-binding cassette transporter A1: A cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev 85: 1343–1372. doi: 10.1152/physrev.00005.2005
[26]  Tang C, Oram JF (2009) The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1791: 563–572. doi: 10.1016/j.bbalip.2009.03.011
[27]  Timmins JM, Lee JY, Boudyguina E, Kluckman KD, Brunham LR, et al. (2005) Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. J Clin Invest 115: 1333–1342. doi: 10.1172/jci23915
[28]  Denis M, Landry YD, Zha X (2008) ATP-binding cassette A1-mediated lipidation of apolipoprotein A-I occurs at the plasma membrane and not in the endocytic compartments. J Biol Chem 283: 16178–16186. doi: 10.1074/jbc.m709597200
[29]  Rust S, Rosier M, Funke H, Real J, Amoura Z, et al. (1999) Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Gen 22: 352–355.
[30]  Amini-Bavil-Olyaee S, Choi YJ, Lee JH, Shi M, Huang IC, et al. (2013) The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry. Cell Host Microbe 13: 452–464. doi: 10.1016/j.chom.2013.03.006
[31]  Vieira FS, Correa G, Einicker-Lamas M, Coutinho-Silva R (2010) Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 102: 391–407. doi: 10.1042/bc20090138
[32]  Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796. doi: 10.1038/nm1268
[33]  Maillard P, Walic M, Meuleman P, Roohvand F, Huby T, et al. (2011) Lipoprotein lipase inhibits hepatitis C virus (HCV) infection by blocking virus cell entry. PLoS ONE 6: e26637. doi: 10.1371/journal.pone.0026637
[34]  Gondeau C, Briolotti P, Razafy F, Duret C, Rubbo PA, et al.. (2013) In vitro infection of primary human hepatocytes by HCV-positive sera: insights on a highly relevant model. Gut. doi: 10.1136.
[35]  Lagaye S, Shen H, Saunier B, Nascimbeni M, Gaston J, et al. (2012) Efficient replication of primary or culture hepatitis C virus isolates in human liver slices: a relevant ex vivo model of liver infection. Hepatology 56: 861–872. doi: 10.1002/hep.25738
[36]  Lavillette D, Pecheur EI, Donot P, Fresquet J, Molle J, et al. (2007) Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J Virol 81: 8752–8765. doi: 10.1128/jvi.02642-06
[37]  Lebreton S, Paladino S, Zurzolo C (2008) Selective roles for cholesterol and actin in compartmentalization of different proteins in the Golgi and plasma membrane of polarized cells. J Biol Chem 283: 29545–29553. doi: 10.1074/jbc.m803819200
[38]  Paladino S, Lebreton S, Tivodar S, Campana V, Tempre R, et al. (2008) Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J Cell Sci 121: 4001–4007. doi: 10.1242/jcs.036038
[39]  Larrede S, Quinn CM, Jessup W, Frisdal E, Olivier M, et al. (2009) Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent. Art Thromb Vasc Biol 29: 1930–1936. doi: 10.1161/atvbaha.109.194548
[40]  Milosavljevic D, Kontush A, Griglio S, Le Naour G, Thillet J, et al. (2003) VLDL-induced triglyceride accumulation in human macrophages is mediated by modulation of LPL lipolytic activity in the absence of change in LPL mass. Biochim Biophys Acta 1631: 51–60. doi: 10.1016/s1388-1981(02)00355-4
[41]  Le Goff W, Settle M, Greene DJ, Morton RE, Smith JD (2006) Reevaluation of the role of the multidrug-resistant P-glycoprotein in cellular cholesterol homeostasis. J Lipid Res 47: 51–58. doi: 10.1194/jlr.m500255-jlr200
[42]  Targett-Adams P, McLauchlan J (2005) Development and characterization of a transient-replication assay for the genotype 2a hepatitis C virus subgenomic replicon. J Gen Virol 86: 3075–3080. doi: 10.1099/vir.0.81334-0
[43]  Chapman MJ, Goldstein S, Lagrange D, Laplaud PM (1981) A density gradient ultracentrifugal procedure for the isolation of the major lipoprotein classes from human serum. J Lipid Res 22: 339–358.
[44]  Zhao C, Dahlman-Wright K (2010) Liver X receptor in cholesterol metabolism. J Endocrinol 204: 233–240. doi: 10.1677/joe-09-0271
[45]  Oosterveer MH, Grefhorst A, Groen AK, Kuipers F (2010) The liver X receptor: control of cellular lipid homeostasis and beyond Implications for drug design. Prog Lipid Res 49: 343–352. doi: 10.1016/j.plipres.2010.03.002
[46]  Donkin JJ, Stukas S, Hirsch-Reinshagen V, Namjoshi D, Wilkinson A, et al. (2010) ATP-binding cassette transporter A1 mediates the beneficial effects of the liver X receptor agonist GW3965 on object recognition memory and amyloid burden in amyloid precursor protein/presenilin 1 mice. J Biol Chem 285: 34144–34154. doi: 10.1074/jbc.m110.108100
[47]  Ji A, Wroblewski JM, Cai L, de Beer MC, Webb NR, et al. (2012) Nascent HDL formation in hepatocytes and role of ABCA1, ABCG1, and SR-BI. J Lipid Res 53: 446–455. doi: 10.1194/jlr.m017079
[48]  Di D, Wang Z, Liu Y, Luo G, Shi Y, et al. (2012) ABCA1 upregulating apolipoproein M expression mediates via the RXR/LXR pathway in HepG2 cells. Biochem Biophys Res Com 421: 152–156. doi: 10.1016/j.bbrc.2012.04.022
[49]  Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, et al. (2010) Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 285: 21092–21102. doi: 10.1074/jbc.m110.104836
[50]  Dao Thi VL, Granier C, Zeisel MB, Guerin M, Mancip J, et al. (2012) Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J Biol Chem 287: 31242–31257. doi: 10.1074/jbc.m112.365924
[51]  Hassan HH, Denis M, Lee DY, Iatan I, Nyholt D, et al. (2007) Identification of an ABCA1-dependent phospholipid-rich plasma membrane apolipoprotein A-I binding site for nascent HDL formation: implications for current models of HDL biogenesis. J Lipid Res 48: 2428–2442. doi: 10.1194/jlr.m700206-jlr200
[52]  Sorci-Thomas MG, Owen JS, Fulp B, Bhat S, Zhu X, et al. (2012) Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J Lipid Res 53: 1890–1909. doi: 10.1194/jlr.m026674
[53]  Landry YD, Denis M, Nandi S, Bell S, Vaughan AM, et al. (2006) ATP-binding cassette transporter A1 expression disrupts raft membrane microdomains through its ATPase-related functions. J Biol Chem 281: 36091–36101. doi: 10.1074/jbc.m602247200
[54]  Zarubica A, Plazzo AP, Stockl M, Trombik T, Hamon Y, et al. (2009) Functional implications of the influence of ABCA1 on lipid microenvironment at the plasma membrane: a biophysical study. FASEB J 23: 1775–1785. doi: 10.1096/fj.08-122192
[55]  Nagao K, Tomioka M, Ueda K (2011) Function and regulation of ABCA1-membrane meso-domain organization and reorganization. Febs J 278: 3190–3203. doi: 10.1111/j.1742-4658.2011.08170.x
[56]  Iatan I, Bailey D, Ruel I, Hafiane A, Campbell S, et al. (2011) Membrane microdomains modulate oligomeric ABCA1 function: impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis. J Lipid Res 52: 2043–2055. doi: 10.1194/jlr.m016196
[57]  Sharma P, Varma R, Sarasij RC, Ira, Gousset K, et al. (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116: 577–589. doi: 10.1016/s0092-8674(04)00167-9
[58]  Schmitz G, Langmann T (2005) Transcriptional regulatory networks in lipid metabolism control ABCA1 expression. Biochem Biophys Acta 1735: 1–19. doi: 10.1016/j.bbalip.2005.04.004
[59]  Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, et al. (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci U S A 97: 12097–12102. doi: 10.1073/pnas.200367697
[60]  Yin K, Liao DF, Tang CK (2010) ATP-binding membrane cassette transporter A1 (ABCA1): a possible link between inflammation and reverse cholesterol transport. Mol Med 16: 438–449.
[61]  Sahoo D, Trischuk TC, Chan T, Drover VA, Ho S, et al. (2004) ABCA1-dependent lipid efflux to apolipoprotein A-I mediates HDL particle formation and decreases VLDL secretion from murine hepatocytes. J Lipid Res 45: 1122–1131. doi: 10.1194/jlr.m300529-jlr200
[62]  Barth H, Schnober EK, Zhang F, Linhardt RJ, Depla E, et al. (2006) Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction. J Virol 80: 10579–10590. doi: 10.1128/jvi.00941-06
[63]  Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, et al. (1998) Binding of hepatitis C virus to CD81. Science 282: 938–941. doi: 10.1126/science.282.5390.938
[64]  Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, et al. (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21: 5017–5025. doi: 10.1093/emboj/cdf529
[65]  Sainz B Jr, Barretto N, Martin DN, Hiraga N, Imamura M, et al. (2012) Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nature Med 18: 281–285. doi: 10.1038/nm.2581
[66]  Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, et al. (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446: 801–805. doi: 10.1038/nature05654
[67]  Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, et al. (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457: 882–886. doi: 10.1038/nature07684
[68]  Heaton NS, Randall G (2011) Multifaceted roles for lipids in viral infection. Trends Microbiol 19: 368–375. doi: 10.1016/j.tim.2011.03.007
[69]  Lopez CA, de Vries AH, Marrink SJ (2011) Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction. Plos Comput Biol 7.
[70]  Lambert D, O’Neill CA, Padfield PJ (2007) Methyl-beta-cyclodextrin increases permeability of Caco-2 cell monolayers by displacing specific claudins from cholesterol rich domains associated with tight junctions. Cell Physiol Biochem 20: 495–506. doi: 10.1159/000107533
[71]  Teissier E, Pecheur EI (2007) Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur Bioph J 36: 887–899. doi: 10.1007/s00249-007-0201-z
[72]  Meex SJ, Andreo U, Sparks JD, Fisher EA (2011) Huh-7 or HepG2 cells: which is the better model for studying human apolipoprotein-B100 assembly and secretion? J Lipid Res 52: 152–158. doi: 10.1194/jlr.d008888
[73]  Carter GC, Bernstone L, Sangani D, Bee JW, Harder T, et al. (2009) HIV entry in macrophages is dependent on intact lipid rafts. Virology 386: 192–202. doi: 10.1016/j.virol.2008.12.031
[74]  Cui HL, Grant A, Mukhamedova N, Pushkarsky T, Jennelle L, et al. (2012) HIV-1 Nef mobilizes lipid rafts in macrophages through a pathway that competes with ABCA1-dependent cholesterol efflux. J Lipid Res 53: 696–708. doi: 10.1194/jlr.m023119
[75]  Morrow MP, Grant A, Mujawar Z, Dubrovsky L, Pushkarsky T, et al. (2010) Stimulation of the liver X receptor pathway inhibits HIV-1 replication via induction of ATP-binding cassette transporter A1. Mol Pharmacol 78: 215–225. doi: 10.1124/mol.110.065029
[76]  Kratzer A, Buchebner M, Pfeifer T, Becker TM, Uray G, et al. (2009) Synthetic LXR agonist attenuates plaque formation in apoE?/? mice without inducing liver steatosis and hypertriglyceridemia. J Lipid Res 50: 312–326. doi: 10.1194/jlr.m800376-jlr200
[77]  Peng D, Hiipakka RA, Xie JT, Dai Q, Kokontis JM, et al. (2011) A novel potent synthetic steroidal liver X receptor agonist lowers plasma cholesterol and triglycerides and reduces atherosclerosis in LDLR(?/?) mice. Br J Pharmacol 162: 1792–1804. doi: 10.1111/j.1476-5381.2011.01202.x
[78]  Smith B, Land H (2012) Anticancer Activity of the Cholesterol Exporter ABCA1 Gene. Cell Reports 2: 580–590. doi: 10.1016/j.celrep.2012.08.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133