Multiple nuclear localization domains have been identified in nuclear proteins, and they finely control nuclear import and functions of those proteins. ZNF268 is a typical KRAB-containing zinc finger protein (KRAB-ZFP), and previous studies have shown that the KRAB domain reinforces nuclear localization of KRAB-ZFPs by interacting with KAP1. In this study, we find that some of 24 zinc fingers of ZNF268 also possess nuclear localization activity. Results of mutagenesis studies suggest that KRAB and zinc fingers are both necessary, and they function both independently and cooperatively for the nuclear localization of ZNF268. However, the subnuclear targeting activities of KRAB and zinc fingers are different. KRAB targets proteins in nucleoplasm, but not in the nucleolus, which is mediated by interaction with KAP1, while zinc fingers target proteins in the whole nucleus uniformly. The cooperative activities of KAP1-KRAB-zinc fingers result in the precise nucleoplasmic, but not nucleolar localization of KRAB-ZFPs. Our studies reveal a novel mechanism for the subcellular localization of KRAB-ZFPs and may help us to further explore their biological functions.
Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S, et al. (2006) A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res 16: 669–677. doi: 10.1101/gr.4842106
[3]
Bellefroid EJ, Poncelet DA, Lecocq PJ, Revelant O, Martial JA (1991) The evolutionarily conserved Kruppel-associated box domain defines a subfamily of eukaryotic multifingered proteins. Proc Natl Acad Sci U S A 88: 3608–3612. doi: 10.1073/pnas.88.9.3608
[4]
Birtle Z, Ponting CP (2006) Meisetz and the birth of the KRAB motif. Bioinformatics 22: 2841–2845. doi: 10.1093/bioinformatics/btl498
[5]
Margolin JF, Friedman JR, Meyer WK, Vissing H, Thiesen HJ, et al. (1994) Kruppel-associated boxes are potent transcriptional repression domains. Proc Natl Acad Sci U S A 91: 4509–4513. doi: 10.1073/pnas.91.10.4509
[6]
Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, et al. (1996) KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10: 2067–2078. doi: 10.1101/gad.10.16.2067
[7]
Sripathy SP, Stevens J, Schultz DC (2006) The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 26: 8623–8638. doi: 10.1128/mcb.00487-06
[8]
Schuh R, Aicher W, Gaul U, Cote S, Preiss A, et al. (1986) A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell 47: 1025–1032. doi: 10.1016/0092-8674(86)90817-2
[9]
Gou DM, Sun Y, Gao L, Chow LM, Huang J, et al. (2001) Cloning and characterization of a novel Kruppel-like zinc finger gene, ZNF268, expressed in early human embryo. Biochim Biophys Acta 1518: 306–310. doi: 10.1016/s0167-4781(01)00194-4
[10]
Shao H, Zhu C, Zhao Z, Guo M, Qiu H, et al. (2006) KRAB-containing zinc finger gene ZNF268 encodes multiple alternatively spliced isoforms that contain transcription regulatory domains. Int J Mol Med 18: 457–463. doi: 10.3892/ijmm.18.3.457
[11]
Sun Y, Gou DM, Liu H, Peng X, Li WX (2003) The KRAB domain of zinc finger gene ZNF268: a potential transcriptional repressor. IUBMB Life 55: 127–131. doi: 10.1080/1521654031000110208
[12]
Wang W, Guo M, Hu L, Cai J, Zeng Y, et al. (2012) The zinc finger protein ZNF268 is overexpressed in human cervical cancer and contributes to tumorigenesis via enhancing NF-kappaB signaling. J Biol Chem 287: 42856–42866. doi: 10.1074/jbc.m112.399923
[13]
Chun JN, Song IS, Kang DH, Song HJ, Kim HI, et al. (2008) A splice variant of the C(2)H(2)-type zinc finger protein, ZNF268s, regulates NF-kappaB activation by TNF-alpha. Mol Cells 26: 175–180. doi: 10.1007/s10059-009-0034-y
[14]
Guo MX, Wang D, Shao HJ, Qiu HL, Xue L, et al. (2006) Transcription of human zinc finger ZNF268 gene requires an intragenic promoter element. J Biol Chem 281: 24623–24636. doi: 10.1074/jbc.m602753200
[15]
Sun Y, Shao H, Li Z, Liu J, Gao L, et al. (2004) ZNF268, a novel kruppel-like zinc finger protein, is implicated in early human liver development. Int J Mol Med 14: 971–975. doi: 10.3892/ijmm.14.6.971
[16]
Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, et al. (2002) Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood 100: 2123–2131. doi: 10.1182/blood-2002-02-0513
[17]
Wang D, Guo MX, Hu HM, Zhao ZZ, Qiu HL, et al. (2008) Human T-cell leukemia virus type 1 oncoprotein tax represses ZNF268 expression through the cAMP-responsive element-binding protein/activating transcription factor pathway. J Biol Chem 283: 16299–16308. doi: 10.1074/jbc.m706426200
[18]
Zhao Z, Wang D, Zhu C, Shao H, Sun C, et al. (2008) Aberrant alternative splicing of human zinc finger gene ZNF268 in human hematological malignancy. Oncol Rep 20: 1243–1248. doi: 10.3892/or_00000136
[19]
Zeng Y, Wang W, Ma J, Wang X, Guo M, et al. (2012) Knockdown of ZNF268, which is transcriptionally downregulated by GATA-1, promotes proliferation of K562 cells. PLoS One 7: e29518. doi: 10.1371/journal.pone.0029518
[20]
Do HJ, Song H, Yang HM, Kim DK, Kim NH, et al. (2006) Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor. FEBS Lett 580: 1865–1871. doi: 10.1016/j.febslet.2006.02.049
[21]
Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, et al. (2008) Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem 283: 8984–8994. doi: 10.1074/jbc.m709040200
[22]
Liu MT, Hsu TY, Chen JY, Yang CS (1998) Epstein-Barr virus DNase contains two nuclear localization signals, which are different in sensitivity to the hydrophobic regions. Virology 247: 62–73. doi: 10.1006/viro.1998.9228
[23]
Luo M, Pang CW, Gerken AE, Brock TG (2004) Multiple nuclear localization sequences allow modulation of 5-lipoxygenase nuclear import. Traffic 5: 847–854. doi: 10.1111/j.1600-0854.2004.00227.x
[24]
Russo G, Ricciardelli G, Pietropaolo C (1997) Different domains cooperate to target the human ribosomal L7a protein to the nucleus and to the nucleoli. J Biol Chem 272: 5229–5235. doi: 10.1074/jbc.272.8.5229
[25]
Wang W, Cai J, Wu Y, Hu L, Chen Z, et al. (2013) Novel activity of KRAB domain that functions to reinforce nuclear localization of KRAB-containing zinc finger proteins by interacting with KAP1. Cell Mol Life Sci 70: 3947–3958. doi: 10.1007/s00018-013-1359-4
[26]
Fernandez-Martinez J, Brown CV, Diez E, Tilburn J, Arst HN Jr, et al. (2003) Overlap of nuclear localisation signal and specific DNA-binding residues within the zinc finger domain of PacC. J Mol Biol 334: 667–684. doi: 10.1016/j.jmb.2003.09.072
[27]
Pandya K, Townes TM (2002) Basic residues within the Kruppel zinc finger DNA binding domains are the critical nuclear localization determinants of EKLF/KLF-1. J Biol Chem 277: 16304–16312. doi: 10.1074/jbc.m200866200
[28]
Matheny C, Day ML, Milbrandt J (1994) The nuclear localization signal of NGFI-A is located within the zinc finger DNA binding domain. J Biol Chem 269: 8176–8181.
[29]
Ito T, Azumano M, Uwatoko C, Itoh K, Kuwahara J (2009) Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 380: 28–32. doi: 10.1016/j.bbrc.2008.12.165
[30]
LaCasse EC, Lefebvre YA (1995) Nuclear localization signals overlap DNA- or RNA-binding domains in nucleic acid-binding proteins. Nucleic Acids Res 23: 1647–1656. doi: 10.1093/nar/23.10.1647
[31]
Dai C, Cao Z, Wu Y, Yi H, Jiang D, et al. (2007) Improved fusion protein expression of EGFP via the mutation of both Kozak and the initial ATG codon. Cell Mol Biol Lett 12: 362–369. doi: 10.2478/s11658-007-0008-z
[32]
Lam YW, Trinkle-Mulcahy L, Lamond AI (2005) The nucleolus. J Cell Sci 118: 1335–1337. doi: 10.1242/jcs.01736
[33]
Savory JG, Hsu B, Laquian IR, Giffin W, Reich T, et al. (1999) Discrimination between NL1- and NL2-mediated nuclear localization of the glucocorticoid receptor. Mol Cell Biol 19: 1025–1037.
[34]
Hanover JA, Love DC, DeAngelis N, O'Kane ME, Lima-Miranda R, et al. (2007) The High Mobility Group Box Transcription Factor Nhp6Ap enters the nucleus by a calmodulin-dependent, Ran-independent pathway. J Biol Chem 282: 33743–33751. doi: 10.1074/jbc.m705875200
[35]
Horke S, Reumann K, Schweizer M, Will H, Heise T (2004) Nuclear trafficking of La protein depends on a newly identified nucleolar localization signal and the ability to bind RNA. J Biol Chem 279: 26563–26570. doi: 10.1074/jbc.m401017200
[36]
Michael WM, Dreyfuss G (1996) Distinct domains in ribosomal protein L5 mediate 5 S rRNA binding and nucleolar localization. J Biol Chem 271: 11571–11574. doi: 10.1074/jbc.271.19.11571
[37]
Maeda Y, Hisatake K, Kondo T, Hanada K, Song CZ, et al. (1992) Mouse rRNA gene transcription factor mUBF requires both HMG-box1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism. EMBO J 11: 3695–3704.
[38]
Wang C, Ivanov A, Chen L, Fredericks WJ, Seto E, et al. (2005) MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 24: 3279–3290. doi: 10.1038/sj.emboj.7600791
[39]
Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, et al. (2005) Nucleolar proteome dynamics. Nature 433: 77–83. doi: 10.1038/nature03207
[40]
Medugno L, Florio F, Cesaro E, Grosso M, Lupo A, et al. (2007) Differential expression and cellular localization of ZNF224 and ZNF255, two isoforms of the Kruppel-like zinc-finger protein family. Gene 403: 125–131. doi: 10.1016/j.gene.2007.07.036
[41]
Lupo A, Cesaro E, Montano G, Izzo P, Costanzo P (2011) ZNF224: Structure and role of a multifunctional KRAB-ZFP protein. Int J Biochem Cell Biol 43: 470–473. doi: 10.1016/j.biocel.2010.12.020
[42]
Carmo-Fonseca M, Mendes-Soares L, Campos I (2000) To be or not to be in the nucleolus. Nat Cell Biol 2: E107–112. doi: 10.1038/35014078