Wnts are small secreted glycoproteins that are highly conserved among species. To date, 19 Wnts have been described, which initiate a signal transduction cascade that is either β-catenin dependent or independent, culminating in the regulation of hundreds of target genes. Extracellular release of Wnts is dependent on lipidation of Wnts by porcupine, a membrane-bound-O-acyltransferase protein in the endoplasmic reticulum. Studies demonstrating the requirement of porcupine for Wnts production are based on cell line and non-human primary cells. We evaluated the requirement for porcupine for Wnts production in human primary astrocytes and CD8+ T cells. Using IWP-2, an inhibitor of porcupine, or siRNA targeting porcupine, we demonstrate that porcupine is not required for the release of Wnt 1, 3, 5b, 6,7a, 10b, and 16a. While IWP had no effect on Wnt 2b release, knockdown of porcupine by siRNA reduced Wnt 2b release by 60%. These data indicate that porcupine-mediated production of Wnts is context dependent and is not required for all Wnts production, suggesting that alternative mechanisms exist for Wnts production.
References
[1]
Polakis P (2007) The many ways of wnt in cancer. Curr Opin Genet Dev 17: 45–51. doi: 10.1016/j.gde.2006.12.007
[2]
Angers S, Moon RT (2009) Proximal events in wnt signal transduction. Nat Rev Mol Cell Biol 10: 468–477. doi: 10.1038/nrm2717
[3]
Coombs GS, Covey TM, Virshup DM (2008) Wnt signaling in development, disease and translational medicine. Curr Drug Targets 9: 513–531. doi: 10.2174/138945008784911796
[4]
Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci 25: 111–112. doi: 10.1016/s0968-0004(99)01539-x
[5]
Galli LM, Burrus LW (2011) Differential palmit(e)oylation of Wnt1 on C93 and S224 residues has overlapping and distinct consequences. PLoS One 6: e26636. doi: 10.1371/journal.pone.0026636
[6]
Ching W, Hang HC, Nusse R (2008) Lipid-independent secretion of a drosophila wnt protein. J Biol Chem 283: 17092–17098. doi: 10.1074/jbc.m802059200
[7]
Herr P, Basler K (2012) Porcupine-mediated lipidation is required for wnt recognition by wls. Dev Biol 361: 392–402. doi: 10.1016/j.ydbio.2011.11.003
[8]
Herr P, Hausmann G, Basler K (2012) WNT secretion and signalling in human disease. Trends Mol Med 18: 483–493. doi: 10.1016/j.molmed.2012.06.008
[9]
Tang X, Wu Y, Belenkaya TY, Huang Q, Ray L, et al. (2012) Roles of N-glycosylation and lipidation in wg secretion and signaling. Dev Biol 364: 32–41. doi: 10.1016/j.ydbio.2012.01.009
[10]
Chen B, Dodge ME, Tang W, Lu J, Ma Z, et al. (2009) Small molecule-mediated disruption of wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5: 100–107. doi: 10.1038/nchembio.137
[11]
Wang X, Moon J, Dodge ME, Pan X, Zhang L, et al. (2013) The development of highly potent inhibitors for porcupine. J Med Chem 56: 2700–2704. doi: 10.1021/jm400159c
[12]
Hadian K, Vincendeau M, Mausbacher N, Nagel D, Hauck SM, et al. (2009) Identification of a heterogeneous nuclear ribonucleoprotein-recognition region in the HIV rev protein. J Biol Chem 284: 33384–33391. doi: 10.1074/jbc.m109.021659
[13]
Lamba S, Ravichandran V, Major EO (2009) Glial cell type-specific subcellular localization of 14-3-3 zeta: An implication for JCV tropism. Glia 57: 971–977. doi: 10.1002/glia.20821
[14]
Li W, Henderson LJ, Major EO, Al-Harthi L (2011) IFN-γ mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the β-catenin pathway (DKK1) in a STAT 3-dependent manner. J Immunol 186: 6771–6778. doi: 10.4049/jimmunol.1100099
[15]
Narasipura SD, Henderson LJ, Fu SW, Chen L, Kashanchi F, et al. (2012) Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol 86: 1911–1921. doi: 10.1128/jvi.06266-11
[16]
Biechele S, Cox BJ, Rossant J (2011) Porcupine homolog is required for canonical wnt signaling and gastrulation in mouse embryos. Dev Biol 355: 275–285. doi: 10.1016/j.ydbio.2011.04.029
[17]
Barrott JJ, Cash GM, Smith AP, Barrow JR, Murtaugh LC (2011) Deletion of mouse porcn blocks wnt ligand secretion and reveals an ectodermal etiology of human focal dermal hypoplasia/Goltz syndrome. Proc Natl Acad Sci U S A 108: 12752–12757. doi: 10.1073/pnas.1006437108
[18]
Caricasole A, Ferraro T, Rimland JM, Terstappen GC (2002) Molecular cloning and initial characterization of the MG61/PORC gene, the human homologue of the drosophila segment polarity gene porcupine. Gene 288: 147–157. doi: 10.1016/s0378-1119(02)00467-5
[19]
Galli LM, Barnes TL, Secrest SS, Kadowaki T, Burrus LW (2007) Porcupine-mediated lipid-modification regulates the activity and distribution of wnt proteins in the chick neural tube. Development 134: 3339–3348. doi: 10.1242/dev.02881
[20]
Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, et al. (2006) Monounsaturated fatty acid modification of wnt protein: Its role in wnt secretion. Dev Cell 11: 791–801. doi: 10.1016/j.devcel.2006.10.003
[21]
Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, et al. (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423: 448–452. doi: 10.1038/nature01611
[22]
Al-Harthi L (2012) Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol 7: 725–730. doi: 10.1007/s11481-012-9412-x
[23]
Cerpa W, Toledo EM, Varela-Nallar L, Inestrosa NC (2009) The role of wnt signaling in neuroprotection. Drug News Perspect 22: 579–591. doi: 10.1358/dnp.2009.22.10.1443391
[24]
Lancaster MA, Gleeson JG (2010) Cystic kidney disease: The role of wnt signaling. Trends Mol Med 16: 349–360. doi: 10.1016/j.molmed.2010.05.004
[25]
Dawson K, Aflaki M, Nattel S (2013) Role of the wnt-frizzled system in cardiac pathophysiology: A rapidly developing, poorly understood area with enormous potential. J Physiol 591: 1409–1432. doi: 10.1113/jphysiol.2012.235382
[26]
Gao X, Arenas-Ramirez N, Scales SJ, Hannoush RN (2011) Membrane targeting of palmitoylated wnt and hedgehog revealed by chemical probes. FEBS Lett 585: 2501–2506. doi: 10.1016/j.febslet.2011.06.033
[27]
Covey TM, Kaur S, Tan Ong T, Proffitt KD, Wu Y, et al. (2012) PORCN moonlights in a wnt-independent pathway that regulates cancer cell proliferation. PLoS One 7: e34532. doi: 10.1371/journal.pone.0034532
[28]
Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, et al. (2009) Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17: 290–298. doi: 10.1016/j.devcel.2009.06.005
[29]
Tsukiyama T, Yamaguchi TP (2012) Mice lacking Wnt2b are viable and display a postnatal olfactory bulb phenotype. Neurosci Lett 512: 48–52. doi: 10.1016/j.neulet.2012.01.062
[30]
Al-Harthi L (2012) Interplay between wnt/β-catenin signaling and HIV: Virologic and biologic consequences in the CNS. J Neuroimmune Pharmacol 7: 731–739. doi: 10.1007/s11481-012-9411-y
[31]
Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N (1996) The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in wingless processing. Genes Dev 10: 3116–3128. doi: 10.1101/gad.10.24.3116
[32]
Kumar A, Zloza A, Moon RT, Watts J, Tenorio AR, et al. (2008) Active β-catenin signaling is an inhibitory pathway for human immunodeficiency virus replication in peripheral blood mononuclear cells. J Virol 82: 2813–2820. doi: 10.1128/jvi.02498-07
[33]
Noordermeer J, Klingensmith J, Nusse R (1995) Differential requirements for segment polarity genes in wingless signaling. Mech Dev 51: 145–155. doi: 10.1016/0925-4773(95)00348-7
[34]
Nusse R (2003) Wnts and hedgehogs: Lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130: 5297–5305. doi: 10.1242/dev.00821
[35]
Perrimon N, Engstrom L, Mahowald AP (1989) Zygotic lethals with specific maternal effect phenotypes in drosophila melanogaster. I. loci on the X chromosome. Genetics 121: 333–352.
[36]
Perrimon N, Mahowald AP (1987) Multiple functions of segment polarity genes in drosophila. Dev Biol 119: 587–600. doi: 10.1016/0012-1606(87)90061-3
[37]
Siegfried E, Wilder EL, Perrimon N (1994) Components of wingless signalling in drosophila. Nature 367: 76–80. doi: 10.1038/367076a0
[38]
Tanaka K, Kitagawa Y, Kadowaki T (2002) Drosophila segment polarity gene product porcupine stimulates the posttranslational N-glycosylation of wingless in the endoplasmic reticulum. J Biol Chem 277: 12816–12823. doi: 10.1074/jbc.m200187200
[39]
Tanaka K, Okabayashi K, Asashima M, Perrimon N, Kadowaki T (2000) The evolutionarily conserved porcupine gene family is involved in the processing of the wnt family. Eur J Biochem 267: 4300–4311. doi: 10.1046/j.1432-1033.2000.01478.x
[40]
van den Heuvel M, Harryman-Samos C, Klingensmith J, Perrimon N, Nusse R (1993) Mutations in the segment polarity genes wingless and porcupine impair secretion of the wingless protein. EMBO J 12: 5293–5302.
[41]
Zhai L, Chaturvedi D, Cumberledge S (2004) Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem 279: 33220–33227. doi: 10.1074/jbc.m403407200