全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Scale-Free Functional Connectivity of the Brain Is Maintained in Anesthetized Healthy Participants but Not in Patients with Unresponsive Wakefulness Syndrome

DOI: 10.1371/journal.pone.0092182

Full-Text   Cite this paper   Add to My Lib

Abstract:

Loss of consciousness in anesthetized healthy participants and in patients with unresponsive wakefulness syndrome (UWS) is associated with substantial alterations of functional connectivity across large-scale brain networks. Yet, a prominent distinction between the two cases is that after anesthesia, brain connectivity and consciousness are spontaneously restored, whereas in patients with UWS this restoration fails to occur, but why? A possible explanation is that the self-organizing capability of the brain is compromised in patients with UWS but not in healthy participants undergoing anesthesia. According to the theory of self-organized criticality, many natural complex systems, including the brain, evolve spontaneously to a critical state wherein system behaviors display spatial and/or temporal scale-invariant characteristics. Here we tested the hypothesis that the scale-free property of brain network organization is in fact fundamentally different between anesthetized healthy participants and UWS patients. We introduced a novel, computationally efficient approach to determine anatomical-functional parcellation of the whole-brain network at increasingly finer spatial scales. We found that in healthy participants, scale-free distributions of node size and node degree were present across wakefulness, propofol sedation, and recovery, despite significant propofol-induced functional connectivity changes. In patients with UWS, the scale-free distribution of node degree was absent, reflecting a fundamental difference between the two groups in adaptive reconfiguration of functional interaction between network components. The maintenance of scale-invariance across propofol sedation in healthy participants suggests the presence of persistent, on-going self-organizing processes to a critical state – a capacity that is compromised in patients with UWS.

References

[1]  Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S, et al. (2010) Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113: 1038–1053. doi: 10.1097/aln.0b013e3181f697f5
[2]  Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, et al. (2000) Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355: 1790–1791. doi: 10.1016/s0140-6736(00)02271-6
[3]  Laureys S, Owen AM, Schiff ND (2004) Brain function in coma, vegetative state, and related disorders. Lancet Neurol 3: 537–546. doi: 10.1016/s1474-4422(04)00852-x
[4]  White NS, Alkire MT (2003) Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage 19: 402–411. doi: 10.1016/s1053-8119(03)00103-4
[5]  Zhou J, Liu X, Song W, Yang Y, Zhao Z, et al. (2011) Specific and nonspecific thalamocortical functional connectivity in normal and vegetative states. Conscious Cogn 20: 257–268. doi: 10.1016/j.concog.2010.08.003
[6]  Liu X, Lauer KK, Ward BD, Li SJ, Hudetz AG (2013) Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology 118: 59–69. doi: 10.1097/aln.0b013e318277a801
[7]  Tononi G, Laureys S (2008) The neurology of consciousness: An overview. In: Laureys S, Tononi G, editors. The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology: Elsevier Ltd.
[8]  Hudetz AG (2012) General anesthesia and human brain connectivity. Brain Connect 2: 291–302. doi: 10.1089/brain.2012.0107
[9]  Alkire MT, Hudetz AG, Tononi G (2008) Consciousness and anesthesia. Science 322: 876–880. doi: 10.1126/science.1149213
[10]  Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett 59: 381–384. doi: 10.1103/physrevlett.59.381
[11]  Bak P, Paczuski M (1995) Complexity, contingency, and criticality. Proc Natl Acad Sci U S A 92: 6689–6696. doi: 10.1073/pnas.92.15.6689
[12]  Gisiger T (2001) Scale invariance in biology: coincidence or footprint of a universal mechanism? Biol Rev Camb Philos Soc 76: 161–209. doi: 10.1017/s1464793101005607
[13]  Werner G (2010) Fractals in the nervous system: conceptual implications for theoretical neuroscience. Front Physiol 1: 15. doi: 10.3389/fphys.2010.00015
[14]  Kello CT, Brown GD, Ferrer ICR, Holden JG, Linkenkaer-Hansen K, et al. (2010) Scaling laws in cognitive sciences. Trends Cogn Sci 14: 223–232. doi: 10.1016/j.tics.2010.02.005
[15]  Chialvo DR (2004) Critical brain networks. Physica a-Statistical Mechanics and Its Applications 340: 756–765. doi: 10.1016/j.physa.2004.05.064
[16]  Beggs JM (2008) The criticality hypothesis: how local cortical networks might optimize information processing. Philos Transact A Math Phys Eng Sci 366: 329–343. doi: 10.1098/rsta.2007.2092
[17]  Stam CJ, van Straaten EC (2012) The organization of physiological brain networks. Clin Neurophysiol 123: 1067–1087. doi: 10.1016/j.clinph.2012.01.011
[18]  Werner G (2007) Brain dynamics across levels of organization. J Physiol Paris 101: 273–279. doi: 10.1016/j.jphysparis.2007.12.001
[19]  Beggs JM, Plenz D (2003) Neuronal avalanches in neocortical circuits. J Neurosci 23: 11167–11177.
[20]  Fraiman D, Chialvo DR (2012) What kind of noise is brain noise: anomalous scaling behavior of the resting brain activity fluctuations. Front Physiol 3: 307. doi: 10.3389/fphys.2012.00307
[21]  Kitzbichler MG, Smith ML, Christensen SR, Bullmore E (2009) Broadband criticality of human brain network synchronization. PLoS Comput Biol 5: e1000314. doi: 10.1371/journal.pcbi.1000314
[22]  Ribeiro TL, Copelli M, Caixeta F, Belchior H, Chialvo DR, et al. (2010) Spike avalanches exhibit universal dynamics across the sleep-wake cycle. PLoS One 5: e14129. doi: 10.1371/journal.pone.0014129
[23]  Boonstra TW, He BJ, Daffertshofer A (2013) Scale-free dynamics and critical phenomena in cortical activity. Front Physiol 4: 79. doi: 10.3389/fphys.2013.00079
[24]  Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 103: 19518–19523. doi: 10.1073/pnas.0606005103
[25]  Stam CJ, de Bruin EA (2004) Scale-free dynamics of global functional connectivity in the human brain. Hum Brain Mapp 22: 97–109. doi: 10.1002/hbm.20016
[26]  Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63–72. doi: 10.1523/jneurosci.3874-05.2006
[27]  Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94: 018102. doi: 10.1103/physrevlett.94.018102
[28]  van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE (2008) Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43: 528–539. doi: 10.1016/j.neuroimage.2008.08.010
[29]  Lee U, Oh G, Kim S, Noh G, Choi B, et al. (2010) Brain networks maintain a scale-free organization across consciousness, anesthesia, and recovery: evidence for adaptive reconfiguration. Anesthesiology 113: 1081–1091. doi: 10.1097/aln.0b013e3181f229b5
[30]  Achard S, Delon-Martin C, Vertes PE, Renard F, Schenck M, et al. (2012) Hubs of brain functional networks are radically reorganized in comatose patients. Proc Natl Acad Sci U S A 109: 20608–20613. doi: 10.1073/pnas.1208933109
[31]  Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR (2012) Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Front Physiol 3: 15. doi: 10.3389/fphys.2012.00015
[32]  Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3: e17. doi: 10.1371/journal.pcbi.0030017
[33]  Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, et al. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15: 273–289. doi: 10.1006/nimg.2001.0978
[34]  Liu X, Lauer KK, Ward BD, Rao SM, Li SJ, et al. (2012) Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory. Hum Brain Mapp 33: 2487–2498. doi: 10.1002/hbm.21385
[35]  Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198. doi: 10.1038/nrn2575
[36]  Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain functional networks. Front Neuroinform 3: 37. doi: 10.3389/neuro.11.037.2009
[37]  Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8: 418–425. doi: 10.1016/j.tics.2004.07.008
[38]  Kaiser M (2007) Brain architecture: a design for natural computation. Philos Transact A Math Phys Eng Sci 365: 3033–3045.
[39]  Werner G (2007) Metastability, criticality and phase transitions in brain and its models. Biosystems 90: 496–508. doi: 10.1016/j.biosystems.2006.12.001
[40]  Fiset P, Paus T, Daloze T, Plourde G, Meuret P, et al. (1999) Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 19: 5506–5513.
[41]  Alkire MT, Haier RJ, Shah NK, Anderson CT (1997) Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology 86: 549–557. doi: 10.1097/00000542-199703000-00006
[42]  Laureys S, Lemaire C, Maquet P, Phillips C, Franck G (1999) Cerebral metabolism during vegetative state and after recovery to consciousness. J Neurol Neurosurg Psychiatry 67: 121. doi: 10.1136/jnnp.67.1.121
[43]  Alkire MT, Miller J (2005) General anesthesia and the neural correlates of consciousness. Prog Brain Res 150: 229–244. doi: 10.1016/s0079-6123(05)50017-7
[44]  Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J, et al. (1999) Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 9: 377–382. doi: 10.1006/nimg.1998.0414
[45]  Plourde G, Belin P, Chartrand D, Fiset P, Backman SB, et al. (2006) Cortical processing of complex auditory stimuli during alterations of consciousness with the general anesthetic propofol. Anesthesiology 104: 448–457. doi: 10.1097/00000542-200603000-00011
[46]  Laureys S, Faymonville ME, Peigneux P, Damas P, Lambermont B, et al. (2002) Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 17: 732–741. doi: 10.1006/nimg.2002.1236
[47]  Davis MH, Coleman MR, Absalom AR, Rodd JM, Johnsrude IS, et al. (2007) Dissociating speech perception and comprehension at reduced levels of awareness. Proc Natl Acad Sci U S A 104: 16032–16037. doi: 10.1073/pnas.0701309104
[48]  Perlin K (2002) Improving noise. Acm Transactions on Graphics 21: 681–682. doi: 10.1145/566654.566636
[49]  Steyn-Ross ML, Steyn-Ross DA, Sleigh JW (2004) Modelling general anaesthesia as a first-order phase transition in the cortex. Prog Biophys Mol Biol 85: 369–385. doi: 10.1016/j.pbiomolbio.2004.02.001
[50]  Steyn-Ross DA, Steyn-Ross ML (2010) Modeling phase transitions in the brain: Springers New York Dordrecht Heidelberg London.
[51]  de Reus MA, van den Heuvel MP (2013) The parcellation-based connectome: Limitations and extensions. Neuroimage 80: 397–404. doi: 10.1016/j.neuroimage.2013.03.053
[52]  Agnati LF, Santarossa L, Genedani S, Canela EI, Leo G, et al.. (2004) On the nested hierarchical organization of CNS: basic characteristics of neuronal molecular organization. In: Erdi P., editor. Cortical Dynamics LNCS 3146: Springer, Berlin. pp. 24–54.
[53]  Sporns O, Honey CJ, Kotter R (2007) Identification and classification of hubs in brain networks. PLoS One 2: e1049. doi: 10.1371/journal.pone.0001049
[54]  Zeki S (1978) Functional specialization in the visual cortex of the monkey. Nature 274: 423–428. doi: 10.1038/274423a0
[55]  Schroter MS, Spoormaker VI, Schorer A, Wohlschlager A, Czisch M, et al. (2012) Spatiotemporal reconfiguration of large-scale brain functional networks during propofol-induced loss of consciousness. J Neurosci 32: 12832–12840. doi: 10.1523/jneurosci.6046-11.2012
[56]  Lee H, Mashour GA, Noh GJ, Kim S, Lee U (2013) Reconfiguration of Network Hub Structure after Propofol-induced Unconsciousness. Anesthesiology 119: 1347–1359. doi: 10.1097/aln.0b013e3182a8ec8c
[57]  Liang Z, King J, Zhang N (2012) Intrinsic organization of the anesthetized brain. J Neurosci 32: 10183–10191. doi: 10.1523/jneurosci.1020-12.2012
[58]  Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex 17: 92–99. doi: 10.1093/cercor/bhj127
[59]  Sanz-Arigita EJ, Schoonheim MM, Damoiseaux JS, Rombouts SA, Maris E, et al. (2010) Loss of ‘small-world’ networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity. PLoS One 5: e13788. doi: 10.1371/journal.pone.0013788
[60]  Boubela RN, Kalcher K, Huf W, Kronnerwetter C, Filzmoser P, et al. (2013) Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest. Front Hum Neurosci 7: 168. doi: 10.3389/fnhum.2013.00168
[61]  Niazy RK, Xie J, Miller K, Beckmann CF, Smith SM (2011) Spectral characteristics of resting state networks. Prog Brain Res 193: 259–276. doi: 10.1016/b978-0-444-53839-0.00017-x
[62]  Isono M, Wakabayashi Y, Fujiki MM, Kamida T, Kobayashi H (2002) Sleep cycle in patients in a state of permanent unconsciousness. Brain Inj 16: 705–712. doi: 10.1080/02699050210127303
[63]  Baars BJ (2005) Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Prog Brain Res 150: 45–53. doi: 10.1016/s0079-6123(05)50004-9
[64]  Tononi G (2004) An information integration theory of consciousness. BMC Neurosci 5: 42. doi: 10.1186/1471-2202-5-42
[65]  Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453: 869–878. doi: 10.1038/nature06976
[66]  Touboul J, Destexhe A (2010) Can power-law scaling and neuronal avalanches arise from stochastic dynamics? PLoS One 5: e8982. doi: 10.1371/journal.pone.0008982
[67]  Klaus A, Yu S, Plenz D (2011) Statistical analyses support power law distributions found in neuronal avalanches. PLoS One 6: e19779. doi: 10.1371/journal.pone.0019779
[68]  Clauset A, Shalizi CR, Newman MEJ (2009) Power-Law Distributions in Empirical Data. Siam Review 51: 661–703. doi: 10.1137/070710111

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133