Sickle hemoglobin (Hb) S and HbC may protect against malaria by reducing the expression of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of parasitized red blood cells (RBCs), thereby weakening their cytoadherence to microvascular endothelial cells (MVECs) and impairing their activation of MVECs to produce pathological responses. Therefore, we hypothesized that parasites causing malaria in HbAS or HbAC heterozygotes have overcome this protective mechanism by expressing PfEMP1 variants which mediate relatively strong binding to MVECs. To test this hypothesis, we performed 31 cytoadherence comparisons between parasites from HbAA and HbAS (or HbAC) Malian children with malaria. Ring-stage parasites from HbAA and HbAS (or HbAC) children were cultivated to trophozoites, purified, and then inoculated in parallel into the same wildtype uninfected RBCs. After one cycle of invasion and maturation to the trophozoite stage expressing PfEMP1, parasite strains were compared for binding to MVECs. In this assay, there were no significant differences in the binding of parasites from HbAS and HbAC children to MVECs compared to those from HbAA children (HbAS, fold-change = 1.46, 95% CI 0.97–2.19, p = 0.07; HbAC, fold-change = 1.19, 95% CI 0.77–1.84, p = 0.43). These data suggest that in-vitro reductions in cytoadherence by HbS and HbC may not be selecting for expression of high-avidity PfEMP1 variants in vivo. Future studies that identify PfEMP1 domains or amino-acid motifs which are selectively expressed in parasites from HbAS children may provide further insights into the mechanism of malaria protection by the sickle-cell trait.
References
[1]
Taylor SM, Parobek CM, Fairhurst RM (2012) Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis 12: 457–468. doi: 10.1016/s1473-3099(12)70055-5
[2]
May J, Evans JA, Timmann C, Ehmen C, Busch W, et al. (2007) Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA 297: 2220–2226. doi: 10.1001/jama.297.20.2220
[3]
Hill AV, Allsopp CE, Kwiatkowski D, Anstey NM, Twumasi P, et al. (1991) Common west African HLA antigens are associated with protection from severe malaria. Nature 352: 595–600. doi: 10.1038/352595a0
[4]
Aidoo M, Terlouw DJ, Kolczak MS, McElroy PD, ter Kuile FO, et al. (2002) Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet 359: 1311–1312. doi: 10.1016/s0140-6736(02)08273-9
[5]
Modiano D, Luoni G, Sirima BS, Simpore J, Verra F, et al. (2001) Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature 414: 305–308. doi: 10.1038/35104556
[6]
Agarwal A, Guindo A, Cissoko Y, Taylor JG, Coulibaly D, et al. (2000) Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood. 96: 2358–2363.
[7]
Allen SJ, O'Donnell A, Alexander ND, Alpers MP, Peto TE, et al. (1997) alpha+?Thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci U S A 94: 14736–14741. doi: 10.1073/pnas.94.26.14736
[8]
Williams TN, Wambua S, Uyoga S, Macharia A, Mwacharo JK, et al. (2005) Both heterozygous and homozygous alpha+ thalassemias protect against severe and fatal Plasmodium falciparum malaria on the coast of Kenya. Blood 106: 368–371. doi: 10.1182/blood-2005-01-0313
[9]
Ruwende C, Khoo SC, Snow RW, Yates SN, Kwiatkowski D, et al. (1995) Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature 376: 246–249. doi: 10.1038/376246a0
[10]
Guindo A, Fairhurst RM, Doumbo OK, Wellems TE, Diallo DA (2007) X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med 4: e66. doi: 10.1371/journal.pmed.0040066
[11]
Taylor SM, Cerami C, Fairhurst RM (2013) Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis. PLoS Pathog 9: e1003327. doi: 10.1371/journal.ppat.1003327
[12]
Bunn HF (2013) The triumph of good over evil: protection by the sickle gene against malaria. Blood 121: 20–25. doi: 10.1182/blood-2012-08-449397
[13]
Cholera R, Brittain NJ, Gillrie MR, Lopera-Mesa TM, Diakite SA, et al. (2008) Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin. Proc Natl Acad Sci U S A 105: 991–996. doi: 10.1073/pnas.0711401105
[14]
Fairhurst RM, Baruch DI, Brittain NJ, Ostera GR, Wallach JS, et al. (2005) Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature 435: 1117–1121. doi: 10.1038/nature03631
[15]
Fairhurst RM, Bess CD, Krause MA (2012) Abnormal PfEMP1/knob display on Plasmodium falciparum-infected erythrocytes containing hemoglobin variants: fresh insights into malaria pathogenesis and protection. Microbes Infect 14: 851–862. doi: 10.1016/j.micinf.2012.05.006
[16]
David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD (1983) Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc Natl Acad Sci U S A 80: 5075–5079. doi: 10.1073/pnas.80.16.5075
Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, et al. (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101–110. doi: 10.1016/0092-8674(95)90056-x
[19]
Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA, et al. (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89–100. doi: 10.1016/0092-8674(95)90055-1
[20]
Bull PC, Kortok M, Kai O, Ndungu F, Ross A, et al. (2000) Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J Infect Dis 182: 252–259. doi: 10.1086/315652
[21]
Barry AE, Leliwa-Sytek A, Tavul L, Imrie H, Migot-Nabias F, et al. (2007) Population genomics of the immune evasion (var) genes of Plasmodium falciparum. PLoS Pathog 3: e34. doi: 10.1371/journal.ppat.0030034
[22]
Kraemer SM, Kyes SA, Aggarwal G, Springer AL, Nelson SO, et al. (2007) Patterns of gene recombination shape var gene repertoires in Plasmodium falciparum: comparisons of geographically diverse isolates. BMC Genomics 8: 45.
[23]
Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, et al. (2013) Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498: 502–505. doi: 10.1038/nature12216
[24]
Ochola LB, Siddondo BR, Ocholla H, Nkya S, Kimani EN, et al. Specific receptor usage in Plasmodium falciparum cytoadherence is associated with disease outcome. PLoS One 6: e14741. doi: 10.1371/journal.pone.0014741
[25]
Bull PC, Berriman M, Kyes S, Quail MA, Hall N, et al. (2005) Plasmodium falciparum variant surface antigen expression patterns during malaria. PLoS Pathog 1: e26. doi: 10.1371/journal.ppat.0010026
[26]
Warimwe GM, Keane TM, Fegan G, Musyoki JN, Newton CR, et al. (2009) Plasmodium falciparum var gene expression is modified by host immunity. Proc Natl Acad Sci U S A 106: 21801–21806. doi: 10.1073/pnas.0907590106
[27]
Kirchgatter K, Portillo Hdel A (2002) Association of severe noncerebral Plasmodium falciparum malaria in Brazil with expressed PfEMP1 DBL1 alpha sequences lacking cysteine residues. Mol Med 8: 16–23.
[28]
Gupta S, Snow RW, Donnelly CA, Marsh K, Newbold C (1999) Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med 5: 340–343.
[29]
Crompton PD, Traore B, Kayentao K, Doumbo S, Ongoiba A, et al. (2008) Sickle cell trait is associated with a delayed onset of malaria: implications for time-to-event analysis in clinical studies of malaria. J Infect Dis 198: 1265–1275. doi: 10.1086/592224
[30]
World Health Organization, Communicable Diseases Cluster (2000) Severe falciparum malaria. Trans R Soc Trop Med Hyg 94 Suppl 1S1–90.
[31]
Krause MA, Diakite SA, Lopera-Mesa TM, Amaratunga C, Arie T, et al. (2012) alpha-Thalassemia impairs the cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One 7: e37214. doi: 10.1371/journal.pone.0037214