全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Complex Regulation of Tanshinone IIA in Rats with Hypertension-Induced Left Ventricular Hypertrophy

DOI: 10.1371/journal.pone.0092216

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tanshinone IIA has definite protective effects on various cardiovascular diseases. However, in hypertension-induced left ventricular hypertrophy (H-LVH), the signaling pathways of tanshinone IIA in inhibition of remodeling and cardiac dysfunction remain unclear. Two-kidney, one-clip induced hypertensive rats (n = 32) were randomized to receive tanshinone IIA (5, 10, 15 mg/kg per day) or 5% glucose injection (GS). Sham-operated rats (n = 8) received 5%GS as control. Cardiac function and dimensions were assessed by using an echocardiography system. Histological determination of the fibrosis and apoptosis was performed using hematoxylin eosin, Masson’s trichrome and TUNEL staining. Matrix metalloproteinase 2 (MMP2) and tissue inhibitor of matrix metalloproteinases type 2 (TIMP2) protein expressions in rat myocardial tissues were detected by immunohistochemistry. Rat cardiomyocytes were isolated by a Langendorff perfusion method. After 48 h culture, the supernatant and cardiomyocytes were collected to determine the potential related proteins impact on cardiac fibrosis and apoptosis. Compared with the sham rats, the heart tissues of H-LVH (5%GS) group suffered severely from the oxidative damage, apoptosis of cardiomyocytes and extracellular matrix (ECM) deposition. In the H-LVH group, tanshinone IIA treated decreased malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity. Tanshinone IIA inhibited cardiomyocytes apoptosis as confirmed by the reduction of TUNEL positive cardiomyocytes and the down-regulation of Caspase-3 activity and Bax/Bcl-2 ratio. Meanwhile, plasma apelin level increased with down-regulation of APJ receptor. Tanshinone IIA suppressed cardiac fibrosis through regulating the paracrine factors released by cardiomyocytes and the TGF-β/Smads signaling pathway activity. In conclusion, our in vivo study showed that tanshinone IIA could improve heart function by enhancing myocardial contractility, inhibiting ECM deposition, and limiting apoptosis of cardiomyocytes and oxidative damage.

References

[1]  Wei-Chuan Tsai (2011) Treatment options for hypertension in high-risk patients. Vascular Health and Risk Management 7: 137–141 doi:10.2147/VHRM.S11235. PubMed: 21468174.
[2]  Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358: 1370–1380 doi:10.1056/NEJMra072139. PubMed: 18367740.
[3]  Díez J, Frohlich ED (2010) A translational approach to hypertensive heart disease. Hypertension 55: 1–8 doi:10.1161/HYPERTENSIONAHA.109.141887. PubMed: 19933923.
[4]  Khouri MG, Peshock RM, Ayers CR, de Lemos JA, Drazner MH (2010) 4-Tiered Classification of Left Ventricular Hypertrophy Based on Left Ventricular Geometry The Dallas Heart Study. Circ Cardiovasc Imaging 3: 164–171 doi:10.1161/CIRCIMAGING.109. 883652. PubMed: 20061518.
[5]  Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117: 568–575 doi:10.1172/JCI31044. PubMed: 17332884.
[6]  Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87: 1285–1342 doi:10.1152/physrev.00012.2007. PubMed: 17928585.
[7]  Si Gao, Zhiping Liu, Hong Li, Peter J Little, Peiqing Liu, et al. (2012) Cardiovascular actions and therapeutic potential of tanshinone IIA. Atherosclerosis 220: 3–10 doi:10.1016/j.atherosclerosis.2011.06.041. PubMed: 21774934.
[8]  Wang P, Wu X, Bao Y, Fang J, Zhou S et al.. (2011) Tanshinone IIA prevents cardiac remodeling through attenuating NAD (P) H oxidase-derived reactive oxygen species production in hypertensive rats. Pharmazie 66: 517–524. PubMed: 21812327.
[9]  Tan X, Li J, Wang X, Chen N, Cai B et al.. (2011) Tanshinone IIA Protects Against Cardiac Hypertrophy via Inhibiting Cal-cineurin/Nfatc3 Pathway. Int J Biol Sci 7: 383–389. PubMed: 21494433.
[10]  Feng J, Li SS, Liang QS (2012) Effects of Tanshinone II A on the myocardial apoptosis and the miR-133 levels in rats with heart failure. Zhongguo Zhong Xi Yi Jie He Za Zhi 32: 930–933. PubMed: 23019950.
[11]  Qiao Z, Ma J, Liu H (2011) Evaluation of the antioxidant potential of Salvia miltiorrhiza ethanol extract in a rat model of ischemia-reperfusion injury. Molecules 16: 10002–10012 doi:10.3390/molecules161210002. PubMed: 22138858.
[12]  Zhang Y, Zhang L, Chu W, Wang B, Zhang J, et al. (2010) Tanshinone IIA Inhibits miR-1 Expression through p38 MAPK Signal Pathway in Post-infarction Rat Cardiomyocytes. Cell Physiol Biochem 26: 991–998 doi:10.1159/000324012. PubMed: 21220930.
[13]  Yang P, Jia YH, Li J, Li LJ, Zhou FH (2010) Study of anti-myocardial cell oxidative stress action and effect of tanshinone IIA on prohibitin expression. J Tradit Chin Med 30: 259–264. PubMed: 21287782.
[14]  Chan P, Liu JC, Lin LJ, Chen PY, Cheng TH, et al. (2011) Tanshinone IIA Inhibits Angiotensin II-Induced Cell Proliferation in Rat Cardiac Fibroblasts. Am J Chin Med 39: 381–394 doi:10.1142/S0192415X11008890. PubMed: 21476213.
[15]  Xu S, Liu P (2013) Tanshinone IIA: new perspectives for old remedies. Expert Opin Ther Pat 23: 149–153 doi:10.1517/13543776.2013.743995. PubMed: 23231009.
[16]  Crow MT, Mani K, Mani K, Mani K, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95: 957–970 doi:10.1161/01.RES.0000148632. 35500.d9. PubMed: 15539639.
[17]  Fedak PW (2008) Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Semin Thorac Cardiovasc Surg 20: 87–93 doi:10.1053/j.semtcvs.2008. 04.001. PubMed: 18707639.
[18]  Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51: 600–606 doi:10.1016/j. yjmcc.2010.10.033. PubMed: 21059352.
[19]  Amin Shah, Young-Bin Oh, Sun Hwa Lee, Jung Min Lim, Suhn Hee Kim (2012) Angiotensin- (1–7) attenuates hypertension in exercise-trained renal hypertensive rats. Am J Physiol Heart Circ Physiol 302: H2372–H2380 doi:10.1152/ajpheart.00846.2011. PubMed: 22467306.
[20]  Lewis CJ, Gong H, Brown MJ, Harding SE (2004) Overexpression of beta 1-adrenoceptors in adult rat ventricular myocytes enhances CGP 12177A cardiostimulation: implications for ‘putative’ beta 4-adrenoceptor pharmacology. Br J Pharmacol 141: 813–824 doi:10.1038/sj. bjp.0705668. PubMed: 14757703.
[21]  Davia K, Hajjar RJ, Terracciano CM, Kent NS, Ranu HK et al.. (1999) Functional alterations in adulate rat myocytes after overexpression of phospholamban using adenovirus. Physiol Genomics 1: 41–50. PubMed: 11015560.
[22]  Xiang Jun Zeng, Li Ke Zhang, Hong Xia Wang, Ling Qiao Lu, Li Quan Ma, et al. (2009) Apelin protects heart against ischemia/reperfusion injury in rat. Peptides 30: 1144–1152 doi:10.1016/j.peptides.2009.02.010. PubMed: 19463748.
[23]  Martos R, Baugh J, Ledwidge M, O’Loughlin C, Murphy NF, et al. (2009) Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail 11: 191–197 doi:10.1093/eurjhf/hfn036. PubMed: 19168518.
[24]  Zile MR, Bennett TD, St John Sutton M, Cho YK, Adamson PB, et al. (2008) Transition from chronic compensated to acute decompensated heart failure: pathophysiological insights obtained from continuous monitoring of intracardiac pressures. Circulation 118: 1433–1441 doi:10.1161/CIRCULATIONAHA.108.783910. PubMed: 18794390.
[25]  Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, et al. (2009) Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol 53: 1119–1126 doi:10.1016/j.jacc.2008.11.051. PubMed: 19324256.
[26]  Drazner MH (2011) The progression of hypertensive heart disease. Circulation 123: 327–334 doi:10.1161/CIRCULATIONAHA.108.845792. PubMed: 21263005.
[27]  Ahmed SH, Clark LL, Pennington WR, Webb CS, Bonnema DD, et al. (2006) Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 113: 2089–2096 doi:10.1161/CIRCULATIONAHA.105.573865. PubMed: 16636176.
[28]  Li YS, Yan L, Yong YQ (2010) Effect of tanshinone II A on the transforming growth factor beta1/Smads signal pathway in rats with hypertensive myocardial hypertrophy. Zhongguo Zhong Xi Yi Jie He Za Zhi 30: 499–503. PubMed: 20681280.
[29]  Zhou DX, Liang QS, He XX, Zhan CY (2008) Changes of c-fos, c-jun mRNA expressions in cardiomyocyte hypertrophy induced by angiotensin II and effects of tanshinone II A. Zhongguo Zhong Yao Za Zhi 33: 936–939. PubMed: 18619357.
[30]  HONG HJ, LIU JC, CHENG TH, CHAN P (2010) Tanshinone IIA attenuates angiotensin II-induced apoptosis via Akt pathway in neonatal rat cardiomyocytes. Acta Pharmacol Sin 31: 1569–1575 doi:10.1038/aps.2010.176. PubMed: 21102479.
[31]  Wang ZH, Liang QS, Zheng Z (2009) The Effect of Tanshinone on Myocardial Hypertrophy Induced by High Salt Diet. Acta Med Univ Sei Technol Huazhong 38: 500–503.
[32]  Santos CX, Anilkumar N, Zhang M, Brewer AC, Shah AM (2011) Redox signaling in cardiac myocytes. Free Radic Biol Med 50: 777–793 doi:10.1016/j.freeradbiomed. 2011.01. 003. PubMed: 21236334.
[33]  Sadoshima J (2006) Redox regulation of growth and death in cardiac myocytes. Antioxid Redox Signal 8: 1621–1624 doi:10.1089/ars.2006.8.1621. PubMed: 16987016.
[34]  Ekhterae D, Hinmon R, Matsuzaki K, Noma M, Zhu W, et al. (2011) Infarction induced myocardial apoptosis and ARC activation. J Surgical Res 166: 59–67 doi:10.1016/j.jss. 2009.05.002. PubMed: 19815236.
[35]  Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: Mechanisms and significance. Annu Rev Physiol 72: 19–44 doi:10.1146/annurev. physiol. 010908.163111. PubMed: 20148665.
[36]  Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122: 437–441 doi:10.1242/jcs.031682. PubMed: 19193868.
[37]  Liao YH, Xia N, Zhou SF, Tang TT, Yan XX, et al. (2012) Interleukin-17A Contributes to Myocardial Ischemia/Reperfusion Injury by Regulating Cardiomyocyte Apoptosis and Neutrophil Infiltration. J Am Coll Cardiol 59: 420–429 doi:10.1016/j.jacc.2011.10.863. PubMed: 22261166.
[38]  Iturrioz X, El Messari S, De Mota N, Fassot C, Alvear-Perez R, et al. (2007) Functional dissociation between apelin receptor signaling and endocytosis: implications for the effects of apelin on arterial blood pressure. Archives des maladies du coeur et des vaisseaux 100: 704–708 doi:AMCV-08-2007-100-8-0003-9683-101019-2006?00023.PubMed: 17928781.
[39]  Langelaan DN, Reddy T, Banks AW, Dellaire G, Dupre DJ, et al. (2013) Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. Biochimica et biophysica acta 1828: 1471–1483 doi:10. 1016/j.bbamem.2013.02.005. PubMed: 23438363.
[40]  Iturrioz X, Alvear-Perez R, De Mota N, Franchet C, Guillier F, et al. (2010) Identification and pharmacological properties of E339-3D6, the first nonpeptidic apelin receptor agonist. Faseb J 24: 1506–1517 doi:10.1096/fj.09-140715. PubMed: 20040517.
[41]  Zhang Z, Yu B, Tao GZ (2009) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chinese medical journal 122: 2360–2365 doi:10.3760/cma.j.issn.0366-6999.2009.19.031?.PubMed: 20079140.
[42]  Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89: 265–272 doi:10.1093/cvr/cvq308. PubMed: 20880837.
[43]  Gradman AH, Wilson JT (2009) Hypertension and diastolic heart failure. Curr Cardiol Rep 11: 422–429 doi:10.1007/s11886-009-0061-5. PubMed: 19863866.
[44]  Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, et al. (2005) Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure- overloaded human heart. Circulation 112: 1136–1144 doi:10.1161/CIRCULATIONAHA. 104.516963. PubMed: 16103240.
[45]  Dixon JA, Spinale FG (2011) Myocardial remodeling: cellular and extracellular events and targets. Annu Rev Physiol 73: 47–68 doi:10.1146/annurev-physiol-012110-142230. PubMed: 21314431.
[46]  Spinale FG, Koval CN, Deschamps AM, Stroud RE, Ikonomidis JS (2008) Dynamic changes in matrix metalloprotienase activity within the human myocardial interstitium during myocardial arrest and reperfusion. Circulation 118: S16–S23 doi:10.1161/CIRCULATIONAHA.108.786640. PubMed: 18824748.
[47]  Kandalam V, Basu R, Abraham T, Wang X, Soloway PD, et al. (2010) TIMP2 deficiency accelerates adverse postmyocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circ Res 106: 796–808 doi:10.1161/CIRCRESAHA.109.209189. PubMed: 20056917.
[48]  Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803: 55–71 doi:10. 1016/j.bbamcr.2010.01.003. PubMed: 20080133.
[49]  Fang J, Xu SW, Wang P, Tang FT, Zhou SG, et al. (2010) Tanshinone II-A attenuates cardiac fibrosis and modulates collagen metabolism in rats with renovascular hypertension. Phytomedicine 18: 58–64 doi:10.1016/j.phymed.2010.06.002. PubMed: 20638255.
[50]  Song Y, Xu J, Li Y, Jia C, Ma X, et al. (2012) Cardiac Ankyrin Repeat Protein Attenuates Cardiac Hypertrophy by Inhibition of ERK1/2 and TGF-β Signaling Pathways. PLOS ONE 7: e50436 doi:10.1371/journal.pone.0050436. PubMed: 23227174.
[51]  Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389–395 doi:10.1038/74651. PubMed: 10742145.
[52]  Chen CH, Poucher SM, Lu J, Henry PD (2004) Fibroblast growth factor 2: from laboratory evidence to clinical application. Curr Vasc Pharmacol 2: 33–43 doi:10.2174/1570161043476500. PubMed: 15320831.
[53]  Narine K, De Wever O, Van Valckenborgh D, Francois K, Bracke M, et al. (2006) Growth factor modulation of fibroblast proliferation, differentiation, and invasion: implications for tissue valve engineering. Tissue Eng 12: 2707–2716 doi:10.1089/ten.2006.12.2707. PubMed: 17518640.
[54]  Suzuki T, Akasaka Y, Namiki A, Ito K, Ishikawa Y, et al. (2008) Basic fibroblast growth factor inhibits ventricular remodeling in Dahl salt-sensitive hypertensive rats. J Hypertens 26: 2436–2444 doi:10.1097/HJH.0b013e328312c889. PubMed: 19008723.
[55]  Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S (2012) TGF-β - an excellent servant but a bad master. J Transl Med 10: 183 doi:10.1186/1479-5876-10-183. PubMed: 22943793.
[56]  Li Y, Yang Y, Yu D, Liang Q (2009) The effect of tanshinone IIA upon the TGF-beta1/Smads signaling pathway in hypertrophic myocardium of hypertensive rats. J Huazhong Univ Sci Technolog Med Sci 29: 476–480 doi:10.1007/s11596-009-0417-5. PubMed: 19662366.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133