全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Bactericidal Antibiotics Increase Hydroxyphenyl Fluorescein Signal by Altering Cell Morphology

DOI: 10.1371/journal.pone.0092231

Full-Text   Cite this paper   Add to My Lib

Abstract:

It was recently proposed that for bactericidal antibiotics a common killing mechanism contributes to lethality involving indirect stimulation of hydroxyl radical (OH?) formation. Flow cytometric detection of OH? by hydroxyphenyl fluorescein (HPF) probe oxidation was used to support this hypothesis. Here we show that increased HPF signals in antibiotics-exposed bacterial cells are explained by fluorescence associated with increased cell size, and do not reflect reactive oxygen species (ROS) concentration. Independently of antibiotics, increased fluorescence was seen for elongated cells expressing the oxidative insensitive green fluorescent protein (GFP). Although our data question the role of ROS in lethality of antibiotics other research approaches point to important interplays between basic bacterial metabolism and antibiotic susceptibility. To underpin such relationships, methods for detecting bacterial metabolites at a cellular level are needed.

References

[1]  Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130: 797–810. doi: 10.1016/j.cell.2007.06.049
[2]  Kohanski MA, DePristo MA, Collins JJ (2010) Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 37: 311–320. doi: 10.1016/j.molcel.2010.01.003
[3]  Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC (2012) Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336: 315–319. doi: 10.1126/science.1219192
[4]  Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ (2012) Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46: 561–572. doi: 10.1016/j.molcel.2012.04.027
[5]  Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J. Biol. Chem 278: 3170–3175. doi: 10.1074/jbc.m209264200
[6]  Mahoney TF, Silhavy TJ (2013) The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol 195: 1869–1874. doi: 10.1128/jb.02197-12
[7]  Keren I, Wu Y, Inocencio J, Mulcahy LR, Lewis K (2013) Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339: 1213–1216. doi: 10.1126/science.1232688
[8]  Liu Y, Imlay JA (2013) Cell death from antibiotics without the involvement of reactive oxygen species. Science 339: 1210–1213. doi: 10.1126/science.1232751
[9]  Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, et al. (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279: 13044–13053. doi: 10.1074/jbc.m312846200
[10]  Fletcher G, Irwin CA, Henson JM, Fillingim C, Malone MM, et al. (1978) Identification of the Escherichia coli cell division gene sep and organization of the cell division-cell envelope genes in the sep-mur-ftsA-envA cluster as determined with specialized transducing lambda bacteriophages. J Bacteriol 133: 91–100.
[11]  Renggli S, Keck W, Jenal U, Ritz D (2013) The role of auto-fluorescence in flow-cytometric analysis of Escherichia coli treated with bactericidal antibiotics. J Bacteriol 195: 4067–73. doi: 10.1128/jb.00393-13
[12]  Spratt BG (1975) Distinct penicillin binding proteins involved in the cell division, elongation, and shape of Escherichia coli K12. Proc. Natl. Acad.. Sci 72: 2999–3003. doi: 10.1073/pnas.72.8.2999
[13]  Mason DJ, Power EG, Talsania H, Phillips I, Gant VA (1995) Antibacterial action of ciprofloxacin. Antimicrob Agents Chemother 39: 2752–2758. doi: 10.1128/aac.39.12.2752
[14]  Gottfredsson M, Erlendsdóttir H, Sigfússon A, Gudmundsson S (1998) Characteristics and dynamics of bacterial populations during postantibiotic effect determined by flow cytometry. Antimicrob Agents Chemother 42: 1005–1011.
[15]  Ezraty B, Vergnes A, Banzhaf M, Duverger Y, Huguenot A, et al. (2013) Fe-S cluster biosynthesis controls uptake of aminoglycosides in a ROS-less death pathway. Science 340: 1583–1587. doi: 10.1126/science.1238328
[16]  Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 334: 986–990. doi: 10.1126/science.1209855
[17]  Chittezham Thomas V, Kinkead LC, Janssen A, Schaeffer CR, Woods KM, et al. (2013) A Dysfunctional Tricarboxylic Acid Cycle Enhances Fitness of Staphylococcus epidermidis During β-Lactam Stress. MBio 20: 4 (4).. doi: 10.1128/mbio.00437-13
[18]  Guyer MS, Reed RR, Steitz JA, Low KB (1981) Identification of a sex-factor-affinity site in E. coli as gamma delta. Cold Spring Harb Symp Quant Biol 45: 135–140. doi: 10.1101/sqb.1981.045.01.022
[19]  Reisner A, Haagensen JA, Schembri MA, Zechner EL, Molin S (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48: 933–946. doi: 10.1046/j.1365-2958.2003.03490.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133